Cargando…
Gold Nanoparticles and Graphene Oxide Flakes Synergistic Partaking in Cytosolic Bactericidal Augmentation: Role of ROS and NOX2 Activity
Gold nanoparticles (GNPs) and graphene oxide flakes (GOFs) exerted significantly (p < 0.0001) supportive roles on the phagocytosis bioactivity of the immune cells of phagocytic nature against the Gram-positive and Gram-negative human pathogenic bacteria Staphylococcus aureus and Escherichia coli....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824746/ https://www.ncbi.nlm.nih.gov/pubmed/33466290 http://dx.doi.org/10.3390/microorganisms9010101 |
Sumario: | Gold nanoparticles (GNPs) and graphene oxide flakes (GOFs) exerted significantly (p < 0.0001) supportive roles on the phagocytosis bioactivity of the immune cells of phagocytic nature against the Gram-positive and Gram-negative human pathogenic bacteria Staphylococcus aureus and Escherichia coli. Under experimental conditions, upon bacterial exposure, the combined GNPs and GOFs induced significant clearance of bacteria through phagosome maturation (p < 0.0001) from time-points of 6 to 30 min and production of reactive oxygen species (ROS, p < 0.0001) through the NADPH oxidase 2 (NOX2, p < 0.0001)-based feedback mechanism. The effects of the combined presence of GNPs and GOFs on phagocytosis (p < 0.0001) suggested a synergistic action underway, also achieved through elevated signal transduction activity in the bone-marrow-derived macrophages (BMDM, p < 0.0001). The current study demonstrated that GNPs’ and GOFs’ bactericidal assisting potentials could be considered an effective and alternative strategy for treating infections from both positive and negative bacterial strains. |
---|