Cargando…

Molecular Evidence of Novel Spotted Fever Group Rickettsia Species in Amblyomma albolimbatum Ticks from the Shingleback Skink (Tiliqua rugosa) in Southern Western Australia

Tick-borne infectious diseases caused by obligate intracellular bacteria of the genus Rickettsia are a growing global problem to human and animal health. Surveillance of these pathogens at the wildlife interface is critical to informing public health strategies to limit their impact. In Australia, r...

Descripción completa

Detalles Bibliográficos
Autores principales: Tadepalli, Mythili, Vincent, Gemma, Hii, Sze Fui, Watharow, Simon, Graves, Stephen, Stenos, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824790/
https://www.ncbi.nlm.nih.gov/pubmed/33466308
http://dx.doi.org/10.3390/pathogens10010035
Descripción
Sumario:Tick-borne infectious diseases caused by obligate intracellular bacteria of the genus Rickettsia are a growing global problem to human and animal health. Surveillance of these pathogens at the wildlife interface is critical to informing public health strategies to limit their impact. In Australia, reptile-associated ticks such as Bothriocroton hydrosauri are the reservoirs for Rickettsia honei, the causative agent of Flinders Island spotted fever. In an effort to gain further insight into the potential for reptile-associated ticks to act as reservoirs for rickettsial infection, Rickettsia-specific PCR screening was performed on 64 Ambylomma albolimbatum ticks taken from shingleback skinks (Tiliqua rugosa) located in southern Western Australia. PCR screening revealed 92% positivity for rickettsial DNA. PCR amplification and sequencing of phylogenetically informative rickettsial genes (ompA, ompB, gltA, sca4, and 17kda) suggested that the single rickettsial genotype detected represented a novel rickettsial species, genetically distinct from but closely related to Rickettsia gravesii and within the rickettsia spotted fever group (SFG). On the basis of this study and previous investigations, it would appear that Rickettsia spp. are endemic to reptile-associated tick species in Australia, with geographically distinct populations of the same tick species harboring genetically distinct SFG Rickettsia species. Further molecular epidemiology studies are required to understand the relationship between these diverse Rickettsiae and their tick hosts and the risk that they may pose to human and animal health.