Cargando…
Using Cholinesterases and Immobilized Luminescent Photobacteria for the Express-Analysis of Mycotoxins and Estimating the Efficiency of Their Enzymatic Hydrolysis
Novel sensitive analytical agents that can be used for simple, affordable, and rapid analysis of mycotoxins are urgently needed in scientific practice, especially for the screening of perspective bio-destructors of the toxic contaminants. We compared the characteristics of a rapid quantitative analy...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825120/ https://www.ncbi.nlm.nih.gov/pubmed/33418863 http://dx.doi.org/10.3390/toxins13010034 |
_version_ | 1783640232902524928 |
---|---|
author | Efremenko, Elena Maslova, Olga Stepanov, Nikolay Ismailov, Anvar |
author_facet | Efremenko, Elena Maslova, Olga Stepanov, Nikolay Ismailov, Anvar |
author_sort | Efremenko, Elena |
collection | PubMed |
description | Novel sensitive analytical agents that can be used for simple, affordable, and rapid analysis of mycotoxins are urgently needed in scientific practice, especially for the screening of perspective bio-destructors of the toxic contaminants. We compared the characteristics of a rapid quantitative analysis of different mycotoxins (deoxynivalenol, ochratoxin A, patulin, sterigmatocystin, and zearalenone) using acetyl-, butyrylcholinesterases and photobacterial strains of luminescent cells in the current study. The best bioindicators in terms of sensitivity and working range (μg/mL) were determined as follows: Photobacterium sp. 17 cells for analysis of deoxynivalenol (0.8–89) and patulin (0.2–32); Photobacterium sp. 9.2 cells for analysis of ochratoxin A (0.4–72) and zearalenone (0.2–32); acetylcholinesterase for analysis of sterigmatocystin (0.12–219). The cells were found to be more sensitive than enzymes. The assayed strains of photobacterial cells ensured 44%–83% lower limit of detection for deoxynivalenol and sterigmatocystin as compared to the previously known data for immobilized luminescent cells, and the range of working concentrations was extended by a factor of 1.5–3.5. Calibration curves for the quantitative determination of patulin using immobilized photobacteria were presented in this work for the first time. This calibration was applied to estimate the enzyme efficiency for hydrolyzing mycotoxins using zearalenone and His(6)-tagged organophosphorus hydrolase as examples. |
format | Online Article Text |
id | pubmed-7825120 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78251202021-01-24 Using Cholinesterases and Immobilized Luminescent Photobacteria for the Express-Analysis of Mycotoxins and Estimating the Efficiency of Their Enzymatic Hydrolysis Efremenko, Elena Maslova, Olga Stepanov, Nikolay Ismailov, Anvar Toxins (Basel) Article Novel sensitive analytical agents that can be used for simple, affordable, and rapid analysis of mycotoxins are urgently needed in scientific practice, especially for the screening of perspective bio-destructors of the toxic contaminants. We compared the characteristics of a rapid quantitative analysis of different mycotoxins (deoxynivalenol, ochratoxin A, patulin, sterigmatocystin, and zearalenone) using acetyl-, butyrylcholinesterases and photobacterial strains of luminescent cells in the current study. The best bioindicators in terms of sensitivity and working range (μg/mL) were determined as follows: Photobacterium sp. 17 cells for analysis of deoxynivalenol (0.8–89) and patulin (0.2–32); Photobacterium sp. 9.2 cells for analysis of ochratoxin A (0.4–72) and zearalenone (0.2–32); acetylcholinesterase for analysis of sterigmatocystin (0.12–219). The cells were found to be more sensitive than enzymes. The assayed strains of photobacterial cells ensured 44%–83% lower limit of detection for deoxynivalenol and sterigmatocystin as compared to the previously known data for immobilized luminescent cells, and the range of working concentrations was extended by a factor of 1.5–3.5. Calibration curves for the quantitative determination of patulin using immobilized photobacteria were presented in this work for the first time. This calibration was applied to estimate the enzyme efficiency for hydrolyzing mycotoxins using zearalenone and His(6)-tagged organophosphorus hydrolase as examples. MDPI 2021-01-06 /pmc/articles/PMC7825120/ /pubmed/33418863 http://dx.doi.org/10.3390/toxins13010034 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Efremenko, Elena Maslova, Olga Stepanov, Nikolay Ismailov, Anvar Using Cholinesterases and Immobilized Luminescent Photobacteria for the Express-Analysis of Mycotoxins and Estimating the Efficiency of Their Enzymatic Hydrolysis |
title | Using Cholinesterases and Immobilized Luminescent Photobacteria for the Express-Analysis of Mycotoxins and Estimating the Efficiency of Their Enzymatic Hydrolysis |
title_full | Using Cholinesterases and Immobilized Luminescent Photobacteria for the Express-Analysis of Mycotoxins and Estimating the Efficiency of Their Enzymatic Hydrolysis |
title_fullStr | Using Cholinesterases and Immobilized Luminescent Photobacteria for the Express-Analysis of Mycotoxins and Estimating the Efficiency of Their Enzymatic Hydrolysis |
title_full_unstemmed | Using Cholinesterases and Immobilized Luminescent Photobacteria for the Express-Analysis of Mycotoxins and Estimating the Efficiency of Their Enzymatic Hydrolysis |
title_short | Using Cholinesterases and Immobilized Luminescent Photobacteria for the Express-Analysis of Mycotoxins and Estimating the Efficiency of Their Enzymatic Hydrolysis |
title_sort | using cholinesterases and immobilized luminescent photobacteria for the express-analysis of mycotoxins and estimating the efficiency of their enzymatic hydrolysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825120/ https://www.ncbi.nlm.nih.gov/pubmed/33418863 http://dx.doi.org/10.3390/toxins13010034 |
work_keys_str_mv | AT efremenkoelena usingcholinesterasesandimmobilizedluminescentphotobacteriafortheexpressanalysisofmycotoxinsandestimatingtheefficiencyoftheirenzymatichydrolysis AT maslovaolga usingcholinesterasesandimmobilizedluminescentphotobacteriafortheexpressanalysisofmycotoxinsandestimatingtheefficiencyoftheirenzymatichydrolysis AT stepanovnikolay usingcholinesterasesandimmobilizedluminescentphotobacteriafortheexpressanalysisofmycotoxinsandestimatingtheefficiencyoftheirenzymatichydrolysis AT ismailovanvar usingcholinesterasesandimmobilizedluminescentphotobacteriafortheexpressanalysisofmycotoxinsandestimatingtheefficiencyoftheirenzymatichydrolysis |