Cargando…
Using a Multiclass Machine Learning Model to Predict the Outcome of Acute Ischemic Stroke Requiring Reperfusion Therapy
Prediction of functional outcome in ischemic stroke patients is useful for clinical decisions. Previous studies mostly elaborate on the prediction of favorable outcomes. Miserable outcomes, which are usually defined as modified Rankin Scale (mRS) 5–6, should be considered as well before further inva...
Autores principales: | Chiu, I-Min, Zeng, Wun-Huei, Cheng, Chi-Yung, Chen, Shih-Hsuan, Lin, Chun-Hung Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825282/ https://www.ncbi.nlm.nih.gov/pubmed/33419013 http://dx.doi.org/10.3390/diagnostics11010080 |
Ejemplares similares
-
Machine Learning Models for Survival and Neurological Outcome Prediction of Out-of-Hospital Cardiac Arrest Patients
por: Cheng, Chi-Yung, et al.
Publicado: (2021) -
Using Machine Learning to Predict Invasive Bacterial Infections in Young Febrile Infants Visiting the Emergency Department
por: Chiu, I-Min, et al.
Publicado: (2021) -
Multiclass Support Vector Machine-Based Lesion Mapping Predicts Functional Outcome in Ischemic Stroke Patients
por: Forkert, Nils Daniel, et al.
Publicado: (2015) -
Automatic Detection of Epilepsy and Seizure Using Multiclass Sparse Extreme Learning Machine Classification
por: Wang, Yuanfa, et al.
Publicado: (2017) -
High-precision multiclass cell classification by supervised machine learning on lectin microarray data
por: Shibata, Mayu, et al.
Publicado: (2020)