Cargando…
Initiated Chemical Vapor Deposition (iCVD) Functionalized Polylactic Acid–Marine Algae Composite Patch for Bone Tissue Engineering
The current study aimed to describe the fabrication of a composite patch by incorporating marine algae powders (MAPs) into poly-lactic acid (PLA) for bone tissue engineering. The prepared composite patch was functionalized with the co-polymer, poly (2-hydroxyethyl methacrylate-co-ethylene glycol dim...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825612/ https://www.ncbi.nlm.nih.gov/pubmed/33430187 http://dx.doi.org/10.3390/polym13020186 |
Sumario: | The current study aimed to describe the fabrication of a composite patch by incorporating marine algae powders (MAPs) into poly-lactic acid (PLA) for bone tissue engineering. The prepared composite patch was functionalized with the co-polymer, poly (2-hydroxyethyl methacrylate-co-ethylene glycol dimethacrylate) (p(HEMA-co-EGDMA)) via initiated chemical vapor deposition (iCVD) to improve its wettability and overall biocompatibility. The iCVD functionalized MAP–PLA composite patch showed superior cell interaction of human osteoblasts. Following the surface functionalization by p(HEMA-co-EGDMA) via the iCVD technique, a highly hydrophilic patch was achieved without tailoring any morphological and structural properties. Moreover, the iCVD modified composite patch exhibited ideal cell adhesion for human osteoblasts, thus making the proposed patch suitable for potential biomedical applications including bone tissue engineering, especially in the fields of dentistry and orthopedy. |
---|