Cargando…
A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods
Purpose: We develop a multi-centric response predictive model using QUS spectral parametric imaging and novel texture-derivate methods for determining tumour responses to neoadjuvant chemotherapy (NAC) prior to therapy initiation. Materials and Methods: QUS Spectroscopy provided parametric images of...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825636/ https://www.ncbi.nlm.nih.gov/pubmed/33520113 http://dx.doi.org/10.18632/oncotarget.27867 |
_version_ | 1783640353190969344 |
---|---|
author | Osapoetra, Laurentius O. Sannachi, Lakshmanan Quiaoit, Karina Dasgupta, Archya DiCenzo, Daniel Fatima, Kashuf Wright, Frances Dinniwell, Robert Trudeau, Maureen Gandhi, Sonal Tran, William Kolios, Michael C. Yang, Wei Czarnota, Gregory J. |
author_facet | Osapoetra, Laurentius O. Sannachi, Lakshmanan Quiaoit, Karina Dasgupta, Archya DiCenzo, Daniel Fatima, Kashuf Wright, Frances Dinniwell, Robert Trudeau, Maureen Gandhi, Sonal Tran, William Kolios, Michael C. Yang, Wei Czarnota, Gregory J. |
author_sort | Osapoetra, Laurentius O. |
collection | PubMed |
description | Purpose: We develop a multi-centric response predictive model using QUS spectral parametric imaging and novel texture-derivate methods for determining tumour responses to neoadjuvant chemotherapy (NAC) prior to therapy initiation. Materials and Methods: QUS Spectroscopy provided parametric images of mid-band-fit (MBF), spectral-slope (SS), spectral-intercept (SI), average-scatterer-diameter (ASD), and average-acoustic-concentration (AAC) in 78 patients with locally advanced breast cancer (LABC) undergoing NAC. Ultrasound radiofrequency data were collected from Sunnybrook Health Sciences Center (SHSC), University of Texas MD Anderson Cancer Center (MD-ACC), and St. Michaels Hospital (SMH) using two different systems. Texture analysis was used to quantify heterogeneities of QUS parametric images. Further, a second-pass texture analysis was applied to obtain texture-derivate features. QUS, texture- and texture-derivate parameters were determined from both tumour core and a 5-mm tumour margin and were used in comparison to histopathological analysis for developing a response predictive model to classify responders versus non-responders. Model performance was assessed using leave-one-out cross-validation. Three standard classification algorithms including a linear discriminant analysis (LDA), k-nearest-neighbors (KNN), and support vector machines-radial basis function (SVM-RBF) were evaluated. Results: A combination of tumour core and margin classification resulted in a peak response prediction performance of 88% sensitivity, 78% specificity, 84% accuracy, 0.86 AUC, 84% PPV, and 83% NPV, achieved using the SVM-RBF classification algorithm. Other parameters and classifiers performed less well running from 66% to 80% accuracy. Conclusions: A QUS-based framework and novel texture-derivative method enabled accurate prediction of responses to NAC. Multi-centric response predictive model provides indications of the robustness of the approach to variations due to different ultrasound systems and acquisition parameters. |
format | Online Article Text |
id | pubmed-7825636 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-78256362021-01-29 A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods Osapoetra, Laurentius O. Sannachi, Lakshmanan Quiaoit, Karina Dasgupta, Archya DiCenzo, Daniel Fatima, Kashuf Wright, Frances Dinniwell, Robert Trudeau, Maureen Gandhi, Sonal Tran, William Kolios, Michael C. Yang, Wei Czarnota, Gregory J. Oncotarget Research Paper Purpose: We develop a multi-centric response predictive model using QUS spectral parametric imaging and novel texture-derivate methods for determining tumour responses to neoadjuvant chemotherapy (NAC) prior to therapy initiation. Materials and Methods: QUS Spectroscopy provided parametric images of mid-band-fit (MBF), spectral-slope (SS), spectral-intercept (SI), average-scatterer-diameter (ASD), and average-acoustic-concentration (AAC) in 78 patients with locally advanced breast cancer (LABC) undergoing NAC. Ultrasound radiofrequency data were collected from Sunnybrook Health Sciences Center (SHSC), University of Texas MD Anderson Cancer Center (MD-ACC), and St. Michaels Hospital (SMH) using two different systems. Texture analysis was used to quantify heterogeneities of QUS parametric images. Further, a second-pass texture analysis was applied to obtain texture-derivate features. QUS, texture- and texture-derivate parameters were determined from both tumour core and a 5-mm tumour margin and were used in comparison to histopathological analysis for developing a response predictive model to classify responders versus non-responders. Model performance was assessed using leave-one-out cross-validation. Three standard classification algorithms including a linear discriminant analysis (LDA), k-nearest-neighbors (KNN), and support vector machines-radial basis function (SVM-RBF) were evaluated. Results: A combination of tumour core and margin classification resulted in a peak response prediction performance of 88% sensitivity, 78% specificity, 84% accuracy, 0.86 AUC, 84% PPV, and 83% NPV, achieved using the SVM-RBF classification algorithm. Other parameters and classifiers performed less well running from 66% to 80% accuracy. Conclusions: A QUS-based framework and novel texture-derivative method enabled accurate prediction of responses to NAC. Multi-centric response predictive model provides indications of the robustness of the approach to variations due to different ultrasound systems and acquisition parameters. Impact Journals LLC 2021-01-19 /pmc/articles/PMC7825636/ /pubmed/33520113 http://dx.doi.org/10.18632/oncotarget.27867 Text en Copyright: © 2021 Osapoetra et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Osapoetra, Laurentius O. Sannachi, Lakshmanan Quiaoit, Karina Dasgupta, Archya DiCenzo, Daniel Fatima, Kashuf Wright, Frances Dinniwell, Robert Trudeau, Maureen Gandhi, Sonal Tran, William Kolios, Michael C. Yang, Wei Czarnota, Gregory J. A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods |
title |
A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods
|
title_full |
A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods
|
title_fullStr |
A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods
|
title_full_unstemmed |
A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods
|
title_short |
A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods
|
title_sort | priori prediction of response in multicentre locally advanced breast cancer (labc) patients using quantitative ultrasound and derivative texture methods |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825636/ https://www.ncbi.nlm.nih.gov/pubmed/33520113 http://dx.doi.org/10.18632/oncotarget.27867 |
work_keys_str_mv | AT osapoetralaurentiuso aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT sannachilakshmanan aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT quiaoitkarina aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT dasguptaarchya aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT dicenzodaniel aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT fatimakashuf aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT wrightfrances aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT dinniwellrobert aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT trudeaumaureen aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT gandhisonal aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT tranwilliam aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT koliosmichaelc aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT yangwei aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT czarnotagregoryj aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT osapoetralaurentiuso prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT sannachilakshmanan prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT quiaoitkarina prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT dasguptaarchya prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT dicenzodaniel prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT fatimakashuf prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT wrightfrances prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT dinniwellrobert prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT trudeaumaureen prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT gandhisonal prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT tranwilliam prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT koliosmichaelc prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT yangwei prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods AT czarnotagregoryj prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods |