Cargando…

A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods

Purpose: We develop a multi-centric response predictive model using QUS spectral parametric imaging and novel texture-derivate methods for determining tumour responses to neoadjuvant chemotherapy (NAC) prior to therapy initiation. Materials and Methods: QUS Spectroscopy provided parametric images of...

Descripción completa

Detalles Bibliográficos
Autores principales: Osapoetra, Laurentius O., Sannachi, Lakshmanan, Quiaoit, Karina, Dasgupta, Archya, DiCenzo, Daniel, Fatima, Kashuf, Wright, Frances, Dinniwell, Robert, Trudeau, Maureen, Gandhi, Sonal, Tran, William, Kolios, Michael C., Yang, Wei, Czarnota, Gregory J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825636/
https://www.ncbi.nlm.nih.gov/pubmed/33520113
http://dx.doi.org/10.18632/oncotarget.27867
_version_ 1783640353190969344
author Osapoetra, Laurentius O.
Sannachi, Lakshmanan
Quiaoit, Karina
Dasgupta, Archya
DiCenzo, Daniel
Fatima, Kashuf
Wright, Frances
Dinniwell, Robert
Trudeau, Maureen
Gandhi, Sonal
Tran, William
Kolios, Michael C.
Yang, Wei
Czarnota, Gregory J.
author_facet Osapoetra, Laurentius O.
Sannachi, Lakshmanan
Quiaoit, Karina
Dasgupta, Archya
DiCenzo, Daniel
Fatima, Kashuf
Wright, Frances
Dinniwell, Robert
Trudeau, Maureen
Gandhi, Sonal
Tran, William
Kolios, Michael C.
Yang, Wei
Czarnota, Gregory J.
author_sort Osapoetra, Laurentius O.
collection PubMed
description Purpose: We develop a multi-centric response predictive model using QUS spectral parametric imaging and novel texture-derivate methods for determining tumour responses to neoadjuvant chemotherapy (NAC) prior to therapy initiation. Materials and Methods: QUS Spectroscopy provided parametric images of mid-band-fit (MBF), spectral-slope (SS), spectral-intercept (SI), average-scatterer-diameter (ASD), and average-acoustic-concentration (AAC) in 78 patients with locally advanced breast cancer (LABC) undergoing NAC. Ultrasound radiofrequency data were collected from Sunnybrook Health Sciences Center (SHSC), University of Texas MD Anderson Cancer Center (MD-ACC), and St. Michaels Hospital (SMH) using two different systems. Texture analysis was used to quantify heterogeneities of QUS parametric images. Further, a second-pass texture analysis was applied to obtain texture-derivate features. QUS, texture- and texture-derivate parameters were determined from both tumour core and a 5-mm tumour margin and were used in comparison to histopathological analysis for developing a response predictive model to classify responders versus non-responders. Model performance was assessed using leave-one-out cross-validation. Three standard classification algorithms including a linear discriminant analysis (LDA), k-nearest-neighbors (KNN), and support vector machines-radial basis function (SVM-RBF) were evaluated. Results: A combination of tumour core and margin classification resulted in a peak response prediction performance of 88% sensitivity, 78% specificity, 84% accuracy, 0.86 AUC, 84% PPV, and 83% NPV, achieved using the SVM-RBF classification algorithm. Other parameters and classifiers performed less well running from 66% to 80% accuracy. Conclusions: A QUS-based framework and novel texture-derivative method enabled accurate prediction of responses to NAC. Multi-centric response predictive model provides indications of the robustness of the approach to variations due to different ultrasound systems and acquisition parameters.
format Online
Article
Text
id pubmed-7825636
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Impact Journals LLC
record_format MEDLINE/PubMed
spelling pubmed-78256362021-01-29 A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods Osapoetra, Laurentius O. Sannachi, Lakshmanan Quiaoit, Karina Dasgupta, Archya DiCenzo, Daniel Fatima, Kashuf Wright, Frances Dinniwell, Robert Trudeau, Maureen Gandhi, Sonal Tran, William Kolios, Michael C. Yang, Wei Czarnota, Gregory J. Oncotarget Research Paper Purpose: We develop a multi-centric response predictive model using QUS spectral parametric imaging and novel texture-derivate methods for determining tumour responses to neoadjuvant chemotherapy (NAC) prior to therapy initiation. Materials and Methods: QUS Spectroscopy provided parametric images of mid-band-fit (MBF), spectral-slope (SS), spectral-intercept (SI), average-scatterer-diameter (ASD), and average-acoustic-concentration (AAC) in 78 patients with locally advanced breast cancer (LABC) undergoing NAC. Ultrasound radiofrequency data were collected from Sunnybrook Health Sciences Center (SHSC), University of Texas MD Anderson Cancer Center (MD-ACC), and St. Michaels Hospital (SMH) using two different systems. Texture analysis was used to quantify heterogeneities of QUS parametric images. Further, a second-pass texture analysis was applied to obtain texture-derivate features. QUS, texture- and texture-derivate parameters were determined from both tumour core and a 5-mm tumour margin and were used in comparison to histopathological analysis for developing a response predictive model to classify responders versus non-responders. Model performance was assessed using leave-one-out cross-validation. Three standard classification algorithms including a linear discriminant analysis (LDA), k-nearest-neighbors (KNN), and support vector machines-radial basis function (SVM-RBF) were evaluated. Results: A combination of tumour core and margin classification resulted in a peak response prediction performance of 88% sensitivity, 78% specificity, 84% accuracy, 0.86 AUC, 84% PPV, and 83% NPV, achieved using the SVM-RBF classification algorithm. Other parameters and classifiers performed less well running from 66% to 80% accuracy. Conclusions: A QUS-based framework and novel texture-derivative method enabled accurate prediction of responses to NAC. Multi-centric response predictive model provides indications of the robustness of the approach to variations due to different ultrasound systems and acquisition parameters. Impact Journals LLC 2021-01-19 /pmc/articles/PMC7825636/ /pubmed/33520113 http://dx.doi.org/10.18632/oncotarget.27867 Text en Copyright: © 2021 Osapoetra et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Paper
Osapoetra, Laurentius O.
Sannachi, Lakshmanan
Quiaoit, Karina
Dasgupta, Archya
DiCenzo, Daniel
Fatima, Kashuf
Wright, Frances
Dinniwell, Robert
Trudeau, Maureen
Gandhi, Sonal
Tran, William
Kolios, Michael C.
Yang, Wei
Czarnota, Gregory J.
A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods
title A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods
title_full A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods
title_fullStr A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods
title_full_unstemmed A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods
title_short A priori prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods
title_sort priori prediction of response in multicentre locally advanced breast cancer (labc) patients using quantitative ultrasound and derivative texture methods
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825636/
https://www.ncbi.nlm.nih.gov/pubmed/33520113
http://dx.doi.org/10.18632/oncotarget.27867
work_keys_str_mv AT osapoetralaurentiuso aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT sannachilakshmanan aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT quiaoitkarina aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT dasguptaarchya aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT dicenzodaniel aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT fatimakashuf aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT wrightfrances aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT dinniwellrobert aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT trudeaumaureen aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT gandhisonal aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT tranwilliam aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT koliosmichaelc aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT yangwei aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT czarnotagregoryj aprioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT osapoetralaurentiuso prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT sannachilakshmanan prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT quiaoitkarina prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT dasguptaarchya prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT dicenzodaniel prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT fatimakashuf prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT wrightfrances prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT dinniwellrobert prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT trudeaumaureen prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT gandhisonal prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT tranwilliam prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT koliosmichaelc prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT yangwei prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods
AT czarnotagregoryj prioripredictionofresponseinmulticentrelocallyadvancedbreastcancerlabcpatientsusingquantitativeultrasoundandderivativetexturemethods