Cargando…
Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density
The synthesis of carbohydrate-functionalized biocompatible poly(oligo(ethylene glycol) methacrylate microgels and the analysis of the specific binding to concanavalin A (ConA) and Escherichia coli (E. coli) is shown. By using different crosslinkers, the microgels’ size, density and elastic modulus w...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825725/ https://www.ncbi.nlm.nih.gov/pubmed/33430287 http://dx.doi.org/10.3390/molecules26020263 |
_version_ | 1783640374150955008 |
---|---|
author | Schröer, Fabian Paul, Tanja J. Wilms, Dimitri Saatkamp, Torben H. Jäck, Nicholas Müller, Janita Strzelczyk, Alexander K. Schmidt, Stephan |
author_facet | Schröer, Fabian Paul, Tanja J. Wilms, Dimitri Saatkamp, Torben H. Jäck, Nicholas Müller, Janita Strzelczyk, Alexander K. Schmidt, Stephan |
author_sort | Schröer, Fabian |
collection | PubMed |
description | The synthesis of carbohydrate-functionalized biocompatible poly(oligo(ethylene glycol) methacrylate microgels and the analysis of the specific binding to concanavalin A (ConA) and Escherichia coli (E. coli) is shown. By using different crosslinkers, the microgels’ size, density and elastic modulus were varied. Given similar mannose (Man) functionalization degrees, the softer microgels show increased ConA uptake, possibly due to increased ConA diffusion in the less dense microgel network. Furthermore, although the microgels did not form clusters with E. coli in solution, surfaces coated with mannose-functionalized microgels are shown to bind the bacteria whereas galactose (Gal) and unfunctionalized microgels show no binding. While ConA binding depends on the overall microgels’ density and Man functionalization degree, E. coli binding to microgels’ surfaces appears to be largely unresponsive to changes of these parameters, indicating a rather promiscuous surface recognition and sufficiently strong anchoring to few surface-exposed Man units. Overall, these results indicate that carbohydrate-functionalized biocompatible oligo(ethylene glycol)-based microgels are able to immobilize carbohydrate binding pathogens specifically and that the binding of free lectins can be controlled by the network density. |
format | Online Article Text |
id | pubmed-7825725 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78257252021-01-24 Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density Schröer, Fabian Paul, Tanja J. Wilms, Dimitri Saatkamp, Torben H. Jäck, Nicholas Müller, Janita Strzelczyk, Alexander K. Schmidt, Stephan Molecules Article The synthesis of carbohydrate-functionalized biocompatible poly(oligo(ethylene glycol) methacrylate microgels and the analysis of the specific binding to concanavalin A (ConA) and Escherichia coli (E. coli) is shown. By using different crosslinkers, the microgels’ size, density and elastic modulus were varied. Given similar mannose (Man) functionalization degrees, the softer microgels show increased ConA uptake, possibly due to increased ConA diffusion in the less dense microgel network. Furthermore, although the microgels did not form clusters with E. coli in solution, surfaces coated with mannose-functionalized microgels are shown to bind the bacteria whereas galactose (Gal) and unfunctionalized microgels show no binding. While ConA binding depends on the overall microgels’ density and Man functionalization degree, E. coli binding to microgels’ surfaces appears to be largely unresponsive to changes of these parameters, indicating a rather promiscuous surface recognition and sufficiently strong anchoring to few surface-exposed Man units. Overall, these results indicate that carbohydrate-functionalized biocompatible oligo(ethylene glycol)-based microgels are able to immobilize carbohydrate binding pathogens specifically and that the binding of free lectins can be controlled by the network density. MDPI 2021-01-07 /pmc/articles/PMC7825725/ /pubmed/33430287 http://dx.doi.org/10.3390/molecules26020263 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Schröer, Fabian Paul, Tanja J. Wilms, Dimitri Saatkamp, Torben H. Jäck, Nicholas Müller, Janita Strzelczyk, Alexander K. Schmidt, Stephan Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density |
title | Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density |
title_full | Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density |
title_fullStr | Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density |
title_full_unstemmed | Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density |
title_short | Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density |
title_sort | lectin and e. coli binding to carbohydrate-functionalized oligo(ethylene glycol)-based microgels: effect of elastic modulus, crosslinker and carbohydrate density |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825725/ https://www.ncbi.nlm.nih.gov/pubmed/33430287 http://dx.doi.org/10.3390/molecules26020263 |
work_keys_str_mv | AT schroerfabian lectinandecolibindingtocarbohydratefunctionalizedoligoethyleneglycolbasedmicrogelseffectofelasticmoduluscrosslinkerandcarbohydratedensity AT paultanjaj lectinandecolibindingtocarbohydratefunctionalizedoligoethyleneglycolbasedmicrogelseffectofelasticmoduluscrosslinkerandcarbohydratedensity AT wilmsdimitri lectinandecolibindingtocarbohydratefunctionalizedoligoethyleneglycolbasedmicrogelseffectofelasticmoduluscrosslinkerandcarbohydratedensity AT saatkamptorbenh lectinandecolibindingtocarbohydratefunctionalizedoligoethyleneglycolbasedmicrogelseffectofelasticmoduluscrosslinkerandcarbohydratedensity AT jacknicholas lectinandecolibindingtocarbohydratefunctionalizedoligoethyleneglycolbasedmicrogelseffectofelasticmoduluscrosslinkerandcarbohydratedensity AT mullerjanita lectinandecolibindingtocarbohydratefunctionalizedoligoethyleneglycolbasedmicrogelseffectofelasticmoduluscrosslinkerandcarbohydratedensity AT strzelczykalexanderk lectinandecolibindingtocarbohydratefunctionalizedoligoethyleneglycolbasedmicrogelseffectofelasticmoduluscrosslinkerandcarbohydratedensity AT schmidtstephan lectinandecolibindingtocarbohydratefunctionalizedoligoethyleneglycolbasedmicrogelseffectofelasticmoduluscrosslinkerandcarbohydratedensity |