Cargando…

Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density

The synthesis of carbohydrate-functionalized biocompatible poly(oligo(ethylene glycol) methacrylate microgels and the analysis of the specific binding to concanavalin A (ConA) and Escherichia coli (E. coli) is shown. By using different crosslinkers, the microgels’ size, density and elastic modulus w...

Descripción completa

Detalles Bibliográficos
Autores principales: Schröer, Fabian, Paul, Tanja J., Wilms, Dimitri, Saatkamp, Torben H., Jäck, Nicholas, Müller, Janita, Strzelczyk, Alexander K., Schmidt, Stephan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825725/
https://www.ncbi.nlm.nih.gov/pubmed/33430287
http://dx.doi.org/10.3390/molecules26020263
_version_ 1783640374150955008
author Schröer, Fabian
Paul, Tanja J.
Wilms, Dimitri
Saatkamp, Torben H.
Jäck, Nicholas
Müller, Janita
Strzelczyk, Alexander K.
Schmidt, Stephan
author_facet Schröer, Fabian
Paul, Tanja J.
Wilms, Dimitri
Saatkamp, Torben H.
Jäck, Nicholas
Müller, Janita
Strzelczyk, Alexander K.
Schmidt, Stephan
author_sort Schröer, Fabian
collection PubMed
description The synthesis of carbohydrate-functionalized biocompatible poly(oligo(ethylene glycol) methacrylate microgels and the analysis of the specific binding to concanavalin A (ConA) and Escherichia coli (E. coli) is shown. By using different crosslinkers, the microgels’ size, density and elastic modulus were varied. Given similar mannose (Man) functionalization degrees, the softer microgels show increased ConA uptake, possibly due to increased ConA diffusion in the less dense microgel network. Furthermore, although the microgels did not form clusters with E. coli in solution, surfaces coated with mannose-functionalized microgels are shown to bind the bacteria whereas galactose (Gal) and unfunctionalized microgels show no binding. While ConA binding depends on the overall microgels’ density and Man functionalization degree, E. coli binding to microgels’ surfaces appears to be largely unresponsive to changes of these parameters, indicating a rather promiscuous surface recognition and sufficiently strong anchoring to few surface-exposed Man units. Overall, these results indicate that carbohydrate-functionalized biocompatible oligo(ethylene glycol)-based microgels are able to immobilize carbohydrate binding pathogens specifically and that the binding of free lectins can be controlled by the network density.
format Online
Article
Text
id pubmed-7825725
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-78257252021-01-24 Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density Schröer, Fabian Paul, Tanja J. Wilms, Dimitri Saatkamp, Torben H. Jäck, Nicholas Müller, Janita Strzelczyk, Alexander K. Schmidt, Stephan Molecules Article The synthesis of carbohydrate-functionalized biocompatible poly(oligo(ethylene glycol) methacrylate microgels and the analysis of the specific binding to concanavalin A (ConA) and Escherichia coli (E. coli) is shown. By using different crosslinkers, the microgels’ size, density and elastic modulus were varied. Given similar mannose (Man) functionalization degrees, the softer microgels show increased ConA uptake, possibly due to increased ConA diffusion in the less dense microgel network. Furthermore, although the microgels did not form clusters with E. coli in solution, surfaces coated with mannose-functionalized microgels are shown to bind the bacteria whereas galactose (Gal) and unfunctionalized microgels show no binding. While ConA binding depends on the overall microgels’ density and Man functionalization degree, E. coli binding to microgels’ surfaces appears to be largely unresponsive to changes of these parameters, indicating a rather promiscuous surface recognition and sufficiently strong anchoring to few surface-exposed Man units. Overall, these results indicate that carbohydrate-functionalized biocompatible oligo(ethylene glycol)-based microgels are able to immobilize carbohydrate binding pathogens specifically and that the binding of free lectins can be controlled by the network density. MDPI 2021-01-07 /pmc/articles/PMC7825725/ /pubmed/33430287 http://dx.doi.org/10.3390/molecules26020263 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Schröer, Fabian
Paul, Tanja J.
Wilms, Dimitri
Saatkamp, Torben H.
Jäck, Nicholas
Müller, Janita
Strzelczyk, Alexander K.
Schmidt, Stephan
Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density
title Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density
title_full Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density
title_fullStr Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density
title_full_unstemmed Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density
title_short Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density
title_sort lectin and e. coli binding to carbohydrate-functionalized oligo(ethylene glycol)-based microgels: effect of elastic modulus, crosslinker and carbohydrate density
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825725/
https://www.ncbi.nlm.nih.gov/pubmed/33430287
http://dx.doi.org/10.3390/molecules26020263
work_keys_str_mv AT schroerfabian lectinandecolibindingtocarbohydratefunctionalizedoligoethyleneglycolbasedmicrogelseffectofelasticmoduluscrosslinkerandcarbohydratedensity
AT paultanjaj lectinandecolibindingtocarbohydratefunctionalizedoligoethyleneglycolbasedmicrogelseffectofelasticmoduluscrosslinkerandcarbohydratedensity
AT wilmsdimitri lectinandecolibindingtocarbohydratefunctionalizedoligoethyleneglycolbasedmicrogelseffectofelasticmoduluscrosslinkerandcarbohydratedensity
AT saatkamptorbenh lectinandecolibindingtocarbohydratefunctionalizedoligoethyleneglycolbasedmicrogelseffectofelasticmoduluscrosslinkerandcarbohydratedensity
AT jacknicholas lectinandecolibindingtocarbohydratefunctionalizedoligoethyleneglycolbasedmicrogelseffectofelasticmoduluscrosslinkerandcarbohydratedensity
AT mullerjanita lectinandecolibindingtocarbohydratefunctionalizedoligoethyleneglycolbasedmicrogelseffectofelasticmoduluscrosslinkerandcarbohydratedensity
AT strzelczykalexanderk lectinandecolibindingtocarbohydratefunctionalizedoligoethyleneglycolbasedmicrogelseffectofelasticmoduluscrosslinkerandcarbohydratedensity
AT schmidtstephan lectinandecolibindingtocarbohydratefunctionalizedoligoethyleneglycolbasedmicrogelseffectofelasticmoduluscrosslinkerandcarbohydratedensity