Cargando…

Application of Natural Neutrophil Products for Stimulation of Monocyte-Derived Macrophages Obtained before and after Osteochondral or Bone Injury

We evaluated the use of some neutrophil products, namely; autologous rabbit antimicrobial neutrophil extract (rANE), heterologous porcine antimicrobial neutrophil extract (pANE), neutrophil degranulation products (DGP) and neutrophil microvesicles (MVs) for stimulation of monocyte-derived macrophage...

Descripción completa

Detalles Bibliográficos
Autores principales: Zdziennicka, Joanna, Szponder, Tomasz, Wessely-Szponder, Joanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825756/
https://www.ncbi.nlm.nih.gov/pubmed/33430306
http://dx.doi.org/10.3390/microorganisms9010124
Descripción
Sumario:We evaluated the use of some neutrophil products, namely; autologous rabbit antimicrobial neutrophil extract (rANE), heterologous porcine antimicrobial neutrophil extract (pANE), neutrophil degranulation products (DGP) and neutrophil microvesicles (MVs) for stimulation of monocyte-derived macrophages (MDMs) to improve healing. Two animal models were evaluated; the rabbit model for autologous osteochondral transplantation (OT) with application of rabbit ANE, DGP or MVs for MDMs stimulation, and the ovine model of the insertion of a Ti implant with the use of porcine ANE, and ovine DGP or MVs for MDMs stimulation. Macrophage activity was assessed on the basis of free radical generation and arginase activity. We estimated that DGP acted in a pro-inflammatory way both on rabbit and ovine MDMs. On the other hand, MVs acted as anti-inflammatory stimulator on MDMs in both experiments. The response to ANE depended on origin of extract (autologous or heterologous). Macrophages from rabbits before and after OT stimulated with autologous extract generated lower amount of NO and superoxide, especially after transplantation. In the ovine model of Ti implant insertion, heterologous ANE evoked increased macrophage pro-inflammatory activity. Our study revealed that these neutrophil products could regulate activity of macrophages, polarizing them into pro-or anti-inflammatory phenotypes that could enhance bone and osteochondral tissue healing.