Cargando…
High air flow-rate electrostatic sampler for the rapid monitoring of airborne coronavirus and influenza viruses
Capturing virus aerosols in a small volume of liquid is essential when monitoring airborne viruses. As such, aerosol-to-hydrosol enrichment is required to produce a detectable viral sample for real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. To meet this requi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825829/ https://www.ncbi.nlm.nih.gov/pubmed/33516114 http://dx.doi.org/10.1016/j.jhazmat.2021.125219 |
Sumario: | Capturing virus aerosols in a small volume of liquid is essential when monitoring airborne viruses. As such, aerosol-to-hydrosol enrichment is required to produce a detectable viral sample for real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. To meet this requirement, the efficient and non-destructive collection of airborne virus particles is needed, while the incoming air flow rate should be sufficiently high to quickly collect a large number of virus particles. To achieve this, we introduced a high air flow-rate electrostatic sampler (HAFES) that collected virus aerosols (human coronavirus 229E, influenza A virus subtypes H1N1 and H3N2, and bacteriophage MS2) in a continuously flowing liquid. Viral collection efficiency was evaluated using aerosol particle counts, while viral recovery rates were assessed using real-time qRT-PCR and plaque assays. An air sampling period of 20 min was sufficient to produce a sample suitable for use in real-time qRT-PCR in a viral epidemic scenario. |
---|