Cargando…
Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen
The current COVID-19 pandemic caused by SARS-CoV-2 coronavirus is expanding around the globe. Hence, accurate and cheap portable sensors are crucially important for the clinical diagnosis of COVID-19. Molecularly imprinted polymers (MIPs) as robust synthetic molecular recognition materials with anti...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826012/ https://www.ncbi.nlm.nih.gov/pubmed/33515985 http://dx.doi.org/10.1016/j.bios.2021.113029 |
Sumario: | The current COVID-19 pandemic caused by SARS-CoV-2 coronavirus is expanding around the globe. Hence, accurate and cheap portable sensors are crucially important for the clinical diagnosis of COVID-19. Molecularly imprinted polymers (MIPs) as robust synthetic molecular recognition materials with antibody-like ability to bind and discriminate between molecules can perfectly serve in building selective elements in such sensors. Herein, we report for the first time on the development of a MIP-based electrochemical sensor for detection of SARS-CoV-2 nucleoprotein (ncovNP). A key element of the sensor is a disposable sensor chip - thin film electrode - interfaced with a MIP-endowed selectivity for ncovNP and connected with a portable potentiostat. The resulting ncovNP sensor showed a linear response to ncovNP in the lysis buffer up to 111 fM with a detection and quantification limit of 15 fM and 50 fM, respectively. Notably, the sensor was capable of signaling ncovNP presence in nasopharyngeal swab samples of COVID-19 positive patients. The presented strategy unlocks a new route for the development of rapid COVID-19 diagnostic tools. |
---|