Cargando…
Sistema de ayuda a la toma de decisiones sanitarias. Propuesta de umbrales de riesgo epidemiológico ante SARS-CoV-2
INTRODUCTION: The SARS-CoV-2 pandemic is the most important health challenge observed in 100 years, and since its emergence has generated the highest excess of non-war-related deaths in the western world. Since this disease is highly contagious and 33% of cases are asymptomatic, it is crucial to dev...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SEPAR. Published by Elsevier España, S.L.U.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826127/ https://www.ncbi.nlm.nih.gov/pubmed/34629639 http://dx.doi.org/10.1016/j.arbres.2020.12.036 |
_version_ | 1783640468362362880 |
---|---|
author | Santiago Pérez, María Isolina López-Vizcaíno, Esther Ruano-Ravina, Alberto Pérez-Ríos, Mónica |
author_facet | Santiago Pérez, María Isolina López-Vizcaíno, Esther Ruano-Ravina, Alberto Pérez-Ríos, Mónica |
author_sort | Santiago Pérez, María Isolina |
collection | PubMed |
description | INTRODUCTION: The SARS-CoV-2 pandemic is the most important health challenge observed in 100 years, and since its emergence has generated the highest excess of non-war-related deaths in the western world. Since this disease is highly contagious and 33% of cases are asymptomatic, it is crucial to develop methods to predict its course. We developed a predictive model for Covid-19 infection in Spanish provinces. METHODS: We applied main components analysis to epidemiological data for Spanish provinces obtained from the National Centre of Epidemiology, based on the epidemiological curve between 24 February and 8 June 2020. Using this method, we classified provinces according to their epidemiological progress (worst, intermediate, and good). RESULTS: We identified 2 components that explained 99% of variability in the 52 epidemiological curves. The first component can be interpreted as the crude incidence rate trend and the second component as the speed of increase or decrease in the incidence rate during the period analysed. We identified 10 provinces in the group with the worst progress and 17 in the intermediate group. The threshold values for the 7-day incidence rate for an alert 1 (intermediate) were 134 cases/100,000 inhabitants, and 167 for alert 2 (high), respectively, showing a high discriminative power between provinces. CONCLUSIONS: These alert levels might be useful for deciding which measures may affect population mobility and other public health decisions when considering community transmission of SARS-CoV-2 in a given geographical area. This information would also facilitate intercomparison between healthcare areas and Autonomous Communities. |
format | Online Article Text |
id | pubmed-7826127 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | SEPAR. Published by Elsevier España, S.L.U. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78261272021-01-25 Sistema de ayuda a la toma de decisiones sanitarias. Propuesta de umbrales de riesgo epidemiológico ante SARS-CoV-2 Santiago Pérez, María Isolina López-Vizcaíno, Esther Ruano-Ravina, Alberto Pérez-Ríos, Mónica Arch Bronconeumol Original INTRODUCTION: The SARS-CoV-2 pandemic is the most important health challenge observed in 100 years, and since its emergence has generated the highest excess of non-war-related deaths in the western world. Since this disease is highly contagious and 33% of cases are asymptomatic, it is crucial to develop methods to predict its course. We developed a predictive model for Covid-19 infection in Spanish provinces. METHODS: We applied main components analysis to epidemiological data for Spanish provinces obtained from the National Centre of Epidemiology, based on the epidemiological curve between 24 February and 8 June 2020. Using this method, we classified provinces according to their epidemiological progress (worst, intermediate, and good). RESULTS: We identified 2 components that explained 99% of variability in the 52 epidemiological curves. The first component can be interpreted as the crude incidence rate trend and the second component as the speed of increase or decrease in the incidence rate during the period analysed. We identified 10 provinces in the group with the worst progress and 17 in the intermediate group. The threshold values for the 7-day incidence rate for an alert 1 (intermediate) were 134 cases/100,000 inhabitants, and 167 for alert 2 (high), respectively, showing a high discriminative power between provinces. CONCLUSIONS: These alert levels might be useful for deciding which measures may affect population mobility and other public health decisions when considering community transmission of SARS-CoV-2 in a given geographical area. This information would also facilitate intercomparison between healthcare areas and Autonomous Communities. SEPAR. Published by Elsevier España, S.L.U. 2021-04 2021-01-23 /pmc/articles/PMC7826127/ /pubmed/34629639 http://dx.doi.org/10.1016/j.arbres.2020.12.036 Text en © 2021 SEPAR. Published by Elsevier España, S.L.U. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Original Santiago Pérez, María Isolina López-Vizcaíno, Esther Ruano-Ravina, Alberto Pérez-Ríos, Mónica Sistema de ayuda a la toma de decisiones sanitarias. Propuesta de umbrales de riesgo epidemiológico ante SARS-CoV-2 |
title | Sistema de ayuda a la toma de decisiones sanitarias. Propuesta de umbrales de riesgo epidemiológico ante SARS-CoV-2 |
title_full | Sistema de ayuda a la toma de decisiones sanitarias. Propuesta de umbrales de riesgo epidemiológico ante SARS-CoV-2 |
title_fullStr | Sistema de ayuda a la toma de decisiones sanitarias. Propuesta de umbrales de riesgo epidemiológico ante SARS-CoV-2 |
title_full_unstemmed | Sistema de ayuda a la toma de decisiones sanitarias. Propuesta de umbrales de riesgo epidemiológico ante SARS-CoV-2 |
title_short | Sistema de ayuda a la toma de decisiones sanitarias. Propuesta de umbrales de riesgo epidemiológico ante SARS-CoV-2 |
title_sort | sistema de ayuda a la toma de decisiones sanitarias. propuesta de umbrales de riesgo epidemiológico ante sars-cov-2 |
topic | Original |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826127/ https://www.ncbi.nlm.nih.gov/pubmed/34629639 http://dx.doi.org/10.1016/j.arbres.2020.12.036 |
work_keys_str_mv | AT santiagoperezmariaisolina sistemadeayudaalatomadedecisionessanitariaspropuestadeumbralesderiesgoepidemiologicoantesarscov2 AT lopezvizcainoesther sistemadeayudaalatomadedecisionessanitariaspropuestadeumbralesderiesgoepidemiologicoantesarscov2 AT ruanoravinaalberto sistemadeayudaalatomadedecisionessanitariaspropuestadeumbralesderiesgoepidemiologicoantesarscov2 AT perezriosmonica sistemadeayudaalatomadedecisionessanitariaspropuestadeumbralesderiesgoepidemiologicoantesarscov2 |