Cargando…
Random forest regression analysis on combined role of meteorological indicators in disease dissemination in an Indian city: A case study of New Delhi
Meteorological parameters show a strong influence on disease transmission in urban localities. The combined influence of factors such as daily mean temperature, absolute humidity and average wind speed on the attack rate and mortality rate of COVID-19 rise in Delhi, India has been investigated in th...
Autor principal: | Hariharan, Ramya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826134/ https://www.ncbi.nlm.nih.gov/pubmed/33520641 http://dx.doi.org/10.1016/j.uclim.2021.100780 |
Ejemplares similares
-
Covariance regression with random forests
por: Alakus, Cansu, et al.
Publicado: (2023) -
The influence of meteorological variables and lockdowns on COVID-19 cases in urban agglomerations of Indian cities
por: Chelani, Asha B., et al.
Publicado: (2022) -
Random forest regression on joint role of meteorological variables, demographic factors, and policy response measures in COVID-19 daily cases: global analysis in different climate zones
por: Lyu, Yiran, et al.
Publicado: (2023) -
On the Offensive: the Role of Outer Membrane Vesicles in the Successful Dissemination of New Delhi Metallo-β-lactamase (NDM-1)
por: Martínez, Melina M. B., et al.
Publicado: (2021) -
Prediction for Global Peste des Petits Ruminants Outbreaks Based on a Combination of Random Forest Algorithms and Meteorological Data
por: Niu, Bing, et al.
Publicado: (2021)