Cargando…

Evolutionary Genomics of Niche-Specific Adaptation to the Cystic Fibrosis Lung in Pseudomonas aeruginosa

The comparative genomics of the transition of the opportunistic pathogen Pseudomonas aeruginosa from a free-living environmental strain to one that causes chronic infection in the airways of cystic fibrosis (CF) patients remain poorly studied. Chronic infections are thought to originate from coloniz...

Descripción completa

Detalles Bibliográficos
Autores principales: Dettman, Jeremy R, Kassen, Rees
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826180/
https://www.ncbi.nlm.nih.gov/pubmed/32898270
http://dx.doi.org/10.1093/molbev/msaa226
_version_ 1783640479734169600
author Dettman, Jeremy R
Kassen, Rees
author_facet Dettman, Jeremy R
Kassen, Rees
author_sort Dettman, Jeremy R
collection PubMed
description The comparative genomics of the transition of the opportunistic pathogen Pseudomonas aeruginosa from a free-living environmental strain to one that causes chronic infection in the airways of cystic fibrosis (CF) patients remain poorly studied. Chronic infections are thought to originate from colonization by a single strain sampled from a diverse, globally distributed population, followed by adaptive evolution to the novel, stressful conditions of the CF lung. However, we do not know whether certain clades are more likely to form chronic infections than others and we lack a comprehensive view of the suite of genes under positive selection in the CF lung. We analyzed whole-genome sequence data from 1,000 P. aeruginosa strains with diverse ecological provenances including the CF lung. CF isolates were distributed across the phylogeny, indicating little genetic predisposition for any one clade to cause chronic infection. Isolates from the CF niche experienced stronger positive selection on core genes than those derived from environmental or acute infection sources, consistent with recent adaptation to the lung environment. Genes with the greatest differential positive selection in the CF niche include those involved in core cellular processes such as metabolism, energy production, and stress response as well as those linked to patho-adaptive processes such as antibiotic resistance, cell wall and membrane modification, quorum sensing, biofilms, mucoidy, motility, and iron homeostasis. Many genes under CF-specific differential positive selection had regulatory functions, consistent with the idea that regulatory mutations play an important role in rapid adaptation to novel environments.
format Online
Article
Text
id pubmed-7826180
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-78261802021-01-27 Evolutionary Genomics of Niche-Specific Adaptation to the Cystic Fibrosis Lung in Pseudomonas aeruginosa Dettman, Jeremy R Kassen, Rees Mol Biol Evol Discoveries The comparative genomics of the transition of the opportunistic pathogen Pseudomonas aeruginosa from a free-living environmental strain to one that causes chronic infection in the airways of cystic fibrosis (CF) patients remain poorly studied. Chronic infections are thought to originate from colonization by a single strain sampled from a diverse, globally distributed population, followed by adaptive evolution to the novel, stressful conditions of the CF lung. However, we do not know whether certain clades are more likely to form chronic infections than others and we lack a comprehensive view of the suite of genes under positive selection in the CF lung. We analyzed whole-genome sequence data from 1,000 P. aeruginosa strains with diverse ecological provenances including the CF lung. CF isolates were distributed across the phylogeny, indicating little genetic predisposition for any one clade to cause chronic infection. Isolates from the CF niche experienced stronger positive selection on core genes than those derived from environmental or acute infection sources, consistent with recent adaptation to the lung environment. Genes with the greatest differential positive selection in the CF niche include those involved in core cellular processes such as metabolism, energy production, and stress response as well as those linked to patho-adaptive processes such as antibiotic resistance, cell wall and membrane modification, quorum sensing, biofilms, mucoidy, motility, and iron homeostasis. Many genes under CF-specific differential positive selection had regulatory functions, consistent with the idea that regulatory mutations play an important role in rapid adaptation to novel environments. Oxford University Press 2020-09-08 /pmc/articles/PMC7826180/ /pubmed/32898270 http://dx.doi.org/10.1093/molbev/msaa226 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Discoveries
Dettman, Jeremy R
Kassen, Rees
Evolutionary Genomics of Niche-Specific Adaptation to the Cystic Fibrosis Lung in Pseudomonas aeruginosa
title Evolutionary Genomics of Niche-Specific Adaptation to the Cystic Fibrosis Lung in Pseudomonas aeruginosa
title_full Evolutionary Genomics of Niche-Specific Adaptation to the Cystic Fibrosis Lung in Pseudomonas aeruginosa
title_fullStr Evolutionary Genomics of Niche-Specific Adaptation to the Cystic Fibrosis Lung in Pseudomonas aeruginosa
title_full_unstemmed Evolutionary Genomics of Niche-Specific Adaptation to the Cystic Fibrosis Lung in Pseudomonas aeruginosa
title_short Evolutionary Genomics of Niche-Specific Adaptation to the Cystic Fibrosis Lung in Pseudomonas aeruginosa
title_sort evolutionary genomics of niche-specific adaptation to the cystic fibrosis lung in pseudomonas aeruginosa
topic Discoveries
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826180/
https://www.ncbi.nlm.nih.gov/pubmed/32898270
http://dx.doi.org/10.1093/molbev/msaa226
work_keys_str_mv AT dettmanjeremyr evolutionarygenomicsofnichespecificadaptationtothecysticfibrosislunginpseudomonasaeruginosa
AT kassenrees evolutionarygenomicsofnichespecificadaptationtothecysticfibrosislunginpseudomonasaeruginosa