Cargando…
Learning Clique Subgraphs in Structural Brain Network Classification with Application to Crystallized Cognition
Structural brain networks constructed from diffusion MRI are important biomarkers for understanding human brain structure and its relation to cognitive functioning. There is increasing interest in learning differences in structural brain networks between groups of subjects in neuroimaging studies, l...
Autores principales: | Wang, Lu, Lin, Feng Vankee, Cole, Martin, Zhang, Zhengwu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826449/ https://www.ncbi.nlm.nih.gov/pubmed/33127479 http://dx.doi.org/10.1016/j.neuroimage.2020.117493 |
Ejemplares similares
-
Increased segregation of structural brain networks underpins enhanced broad cognitive abilities of cognitive training
por: Chen, Quanjing, et al.
Publicado: (2021) -
Finding a Maximum Common Subgraph
from Molecular Structural
Formulas through the Maximum Clique Approach Combined with the Ising
Model
por: Okamoto, Yasuharu
Publicado: (2020) -
Subgraphs of functional brain networks identify dynamical constraints of cognitive control
por: Khambhati, Ankit N., et al.
Publicado: (2018) -
Correction: Subgraphs of functional brain networks identify dynamical constraints of cognitive control
por: Khambhati, Ankit N., et al.
Publicado: (2018) -
Subgraph Learning for Topological Geolocalization with Graph Neural Networks
por: Zha, Bing, et al.
Publicado: (2023)