Cargando…
Molecular Analysis of 14-3-3 Genes in Citrus sinensis and Their Responses to Different Stresses
14-3-3 proteins (14-3-3s) are among the most important phosphorylated molecules playing crucial roles in regulating plant development and defense responses to environmental constraints. No report thus far has documented the gene family of 14-3-3s in Citrus sinensis and their roles in response to str...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826509/ https://www.ncbi.nlm.nih.gov/pubmed/33430069 http://dx.doi.org/10.3390/ijms22020568 |
Sumario: | 14-3-3 proteins (14-3-3s) are among the most important phosphorylated molecules playing crucial roles in regulating plant development and defense responses to environmental constraints. No report thus far has documented the gene family of 14-3-3s in Citrus sinensis and their roles in response to stresses. In this study, nine 14-3-3 genes, designated as CitGF14s (CitGF14a through CitGF14i) were identified from the latest C. sinensis genome. Phylogenetic analysis classified them into ε-like and non-ε groups, which were supported by gene structure analysis. The nine CitGF14s were located on five chromosomes, and none had duplication. Publicly available RNA-Seq raw data and microarray databases were mined for 14-3-3 expression profiles in different organs of citrus and in response to biotic and abiotic stresses. RT-qPCR was used for further examining spatial expression patterns of CitGF14s in citrus and their temporal expressions in one-year-old C. sinensis “Xuegan” plants after being exposed to different biotic and abiotic stresses. The nine CitGF14s were expressed in eight different organs with some isoforms displayed tissue-specific expression patterns. Six of the CitGF14s positively responded to citrus canker infection (Xanthomonas axonopodis pv. citri). The CitGF14s showed expressional divergence after phytohormone application and abiotic stress treatments, suggesting that 14-3-3 proteins are ubiquitous regulators in C. sinensis. Using the yeast two-hybrid assay, CitGF14a, b, c, d, g, and h were found to interact with CitGF14i proteins to form a heterodimer, while CitGF14i interacted with itself to form a homodimer. Further analysis of CitGF14s co-expression and potential interactors established a 14-3-3s protein interaction network. The established network identified 14-3-3 genes and several candidate clients which may play an important role in developmental regulation and stress responses in this important fruit crop. This is the first study of 14-3-3s in citrus, and the established network may help further investigation of the roles of 14-3-3s in response to abiotic and biotic constraints. |
---|