Cargando…
Nanoindentation of Graphene/Phospholipid Nanocomposite: A Molecular Dynamics Study
Graphene and phospholipids are widely used in biosensing and drug delivery. This paper studies the mechanical and electronic properties of a composite based on two graphene flakes and dipalmitoylphosphatidylcholine (DPPC) phospholipid molecules located between them via combination of various mathema...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826516/ https://www.ncbi.nlm.nih.gov/pubmed/33440910 http://dx.doi.org/10.3390/molecules26020346 |
Sumario: | Graphene and phospholipids are widely used in biosensing and drug delivery. This paper studies the mechanical and electronic properties of a composite based on two graphene flakes and dipalmitoylphosphatidylcholine (DPPC) phospholipid molecules located between them via combination of various mathematical modeling methods. Molecular dynamics simulation showed that an adhesion between bilayer graphene and DPCC increases during nanoindentation of the composite by a carbon nanotube (CNT). Herewith, the DPPC molecule located under a nanotip takes the form of graphene and is not destroyed. By the Mulliken procedure, it was shown that the phospholipid molecules act as a “buffer” of charge between two graphene sheets and CNT. The highest values of electron transfer in the graphene/DPPC system were observed at the lower indentation point, when the deflection reached its maximum value. |
---|