Cargando…
Real-Time Leak Detection for a Gas Pipeline Using a k-NN Classifier and Hybrid AE Features
This paper introduces a technique using a k-nearest neighbor (k-NN) classifier and hybrid features extracted from acoustic emission (AE) signals for detecting leakages in a gas pipeline. The whole algorithm is embedded in a microcontroller unit (MCU) to detect leaks in real-time. The embedded system...
Autores principales: | Quy, Thang Bui, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826581/ https://www.ncbi.nlm.nih.gov/pubmed/33430370 http://dx.doi.org/10.3390/s21020367 |
Ejemplares similares
-
A Hybrid Leak Localization Approach Using Acoustic Emission for Industrial Pipelines
por: Gao, Yangde, et al.
Publicado: (2022) -
The Enhancement of Leak Detection Performance for Water Pipelines through the Renovation of Training Data
por: Luong, Tu T.N., et al.
Publicado: (2020) -
A Novel Pipeline Leak Detection Technique Based on Acoustic Emission Features and Two-Sample Kolmogorov–Smirnov Test
por: Rai, Akhand, et al.
Publicado: (2021) -
A Method for Pipeline Leak Detection Based on Acoustic Imaging and Deep Learning
por: Ahmad, Sajjad, et al.
Publicado: (2022) -
Hybrid Pipeline Hardware Architecture Based on Error Detection and Correction for AES
por: Algredo-Badillo, Ignacio, et al.
Publicado: (2021)