Cargando…

Parametric Finite Element Model and Mechanical Characterisation of Electrospun Materials for Biomedical Applications

Electrospun materials, due to their unique properties, have found many applications in the biomedical field. Exploiting their porous nanofibrous structure, they are often used as scaffolds in tissue engineering which closely resemble a native cellular environment. The structural and mechanical prope...

Descripción completa

Detalles Bibliográficos
Autores principales: Polak-Kraśna, Katarzyna, Mazgajczyk, Emilia, Heikkilä, Pirjo, Georgiadis, Anthimos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826732/
https://www.ncbi.nlm.nih.gov/pubmed/33430450
http://dx.doi.org/10.3390/ma14020278
_version_ 1783640590590672896
author Polak-Kraśna, Katarzyna
Mazgajczyk, Emilia
Heikkilä, Pirjo
Georgiadis, Anthimos
author_facet Polak-Kraśna, Katarzyna
Mazgajczyk, Emilia
Heikkilä, Pirjo
Georgiadis, Anthimos
author_sort Polak-Kraśna, Katarzyna
collection PubMed
description Electrospun materials, due to their unique properties, have found many applications in the biomedical field. Exploiting their porous nanofibrous structure, they are often used as scaffolds in tissue engineering which closely resemble a native cellular environment. The structural and mechanical properties of the substrates need to be carefully optimised to mimic cues used by the extracellular matrix to guide cells’ behaviour and improve existing scaffolds. Optimisation of these parameters is enabled by using the finite element model of electrospun structures proposed in this study. First, a fully parametric three-dimensional microscopic model of electrospun material with a random fibrous network was developed. Experimental results were obtained by testing electrospun poly(ethylene) oxide materials. Parameters of single fibres were determined by atomic force microscopy nanoindentations and used as input data for the model. The validation was performed by comparing model output data with tensile test results obtained for electrospun mats. We performed extensive analysis of model parameters correlations to understand the crucial factors and enable extrapolation of a simplified model. We found good agreement between the simulation and the experimental data. The proposed model is a potent tool in the optimisation of electrospun structures and scaffolds for enhanced regenerative therapies.
format Online
Article
Text
id pubmed-7826732
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-78267322021-01-25 Parametric Finite Element Model and Mechanical Characterisation of Electrospun Materials for Biomedical Applications Polak-Kraśna, Katarzyna Mazgajczyk, Emilia Heikkilä, Pirjo Georgiadis, Anthimos Materials (Basel) Article Electrospun materials, due to their unique properties, have found many applications in the biomedical field. Exploiting their porous nanofibrous structure, they are often used as scaffolds in tissue engineering which closely resemble a native cellular environment. The structural and mechanical properties of the substrates need to be carefully optimised to mimic cues used by the extracellular matrix to guide cells’ behaviour and improve existing scaffolds. Optimisation of these parameters is enabled by using the finite element model of electrospun structures proposed in this study. First, a fully parametric three-dimensional microscopic model of electrospun material with a random fibrous network was developed. Experimental results were obtained by testing electrospun poly(ethylene) oxide materials. Parameters of single fibres were determined by atomic force microscopy nanoindentations and used as input data for the model. The validation was performed by comparing model output data with tensile test results obtained for electrospun mats. We performed extensive analysis of model parameters correlations to understand the crucial factors and enable extrapolation of a simplified model. We found good agreement between the simulation and the experimental data. The proposed model is a potent tool in the optimisation of electrospun structures and scaffolds for enhanced regenerative therapies. MDPI 2021-01-07 /pmc/articles/PMC7826732/ /pubmed/33430450 http://dx.doi.org/10.3390/ma14020278 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Polak-Kraśna, Katarzyna
Mazgajczyk, Emilia
Heikkilä, Pirjo
Georgiadis, Anthimos
Parametric Finite Element Model and Mechanical Characterisation of Electrospun Materials for Biomedical Applications
title Parametric Finite Element Model and Mechanical Characterisation of Electrospun Materials for Biomedical Applications
title_full Parametric Finite Element Model and Mechanical Characterisation of Electrospun Materials for Biomedical Applications
title_fullStr Parametric Finite Element Model and Mechanical Characterisation of Electrospun Materials for Biomedical Applications
title_full_unstemmed Parametric Finite Element Model and Mechanical Characterisation of Electrospun Materials for Biomedical Applications
title_short Parametric Finite Element Model and Mechanical Characterisation of Electrospun Materials for Biomedical Applications
title_sort parametric finite element model and mechanical characterisation of electrospun materials for biomedical applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826732/
https://www.ncbi.nlm.nih.gov/pubmed/33430450
http://dx.doi.org/10.3390/ma14020278
work_keys_str_mv AT polakkrasnakatarzyna parametricfiniteelementmodelandmechanicalcharacterisationofelectrospunmaterialsforbiomedicalapplications
AT mazgajczykemilia parametricfiniteelementmodelandmechanicalcharacterisationofelectrospunmaterialsforbiomedicalapplications
AT heikkilapirjo parametricfiniteelementmodelandmechanicalcharacterisationofelectrospunmaterialsforbiomedicalapplications
AT georgiadisanthimos parametricfiniteelementmodelandmechanicalcharacterisationofelectrospunmaterialsforbiomedicalapplications