Cargando…
Automatic Lung Segmentation on Chest X-rays Using Self-Attention Deep Neural Network
Accurate identification of the boundaries of organs or abnormal objects (e.g., tumors) in medical images is important in surgical planning and in the diagnosis and prognosis of diseases. In this study, we propose a deep learning-based method to segment lung areas in chest X-rays. The novel aspect of...
Autores principales: | Kim, Minki, Lee, Byoung-Dai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826788/ https://www.ncbi.nlm.nih.gov/pubmed/33430480 http://dx.doi.org/10.3390/s21020369 |
Ejemplares similares
-
Unsupervised anomaly detection for posteroanterior chest X-rays using multiresolution patch-based self-supervised learning
por: Kim, Minki, et al.
Publicado: (2023) -
Automatic lung segmentation in chest X-ray images using improved U-Net
por: Liu, Wufeng, et al.
Publicado: (2022) -
A convolutional attention mapping deep neural network for classification and localization of cardiomegaly on chest X-rays
por: Innat, Mohammed, et al.
Publicado: (2023) -
Developing an efficient deep neural network for automatic detection of COVID-19 using chest X-ray images
por: Sheykhivand, Sobhan, et al.
Publicado: (2021) -
COVIDetection: deep convolutional neural networks-based automatic detection of COVID-19 with chest x-ray images
por: Geetha, R., et al.
Publicado: (2022)