Cargando…
Solid-Contact Potentiometric Sensors Based on Main-Tailored Bio-Mimics for Trace Detection of Harmine Hallucinogen in Urine Specimens
All-solid-state potentiometric sensors have attracted great attention over other types of potentiometric sensors due to their outstanding properties such as enhanced portability, simplicity of handling, affordability and flexibility. Herein, a novel solid-contact ion-selective electrode (SC-ISE) bas...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826799/ https://www.ncbi.nlm.nih.gov/pubmed/33435196 http://dx.doi.org/10.3390/molecules26020324 |
_version_ | 1783640606820532224 |
---|---|
author | Amr, Abde El-Galil E. Kamel, Ayman H. Almehizia, Abdulrahman A. Sayed, Ahmed Y. A. Abd-Rabboh, Hisham S. M. |
author_facet | Amr, Abde El-Galil E. Kamel, Ayman H. Almehizia, Abdulrahman A. Sayed, Ahmed Y. A. Abd-Rabboh, Hisham S. M. |
author_sort | Amr, Abde El-Galil E. |
collection | PubMed |
description | All-solid-state potentiometric sensors have attracted great attention over other types of potentiometric sensors due to their outstanding properties such as enhanced portability, simplicity of handling, affordability and flexibility. Herein, a novel solid-contact ion-selective electrode (SC-ISE) based on poly(3,4-ethylenedioxythiophene) (PEDOT) as the ion-to-electron transducer was designed and characterized for rapid detection of harmine. The harmine-sensing membrane was based on the use of synthesized imprinted bio-mimics as a selective material for this recognition. The imprinted receptors were synthesized using acrylamide (AA) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. The polymerization process was carried out at 70 °C in the presence of dibenzoyl peroxide (DBO) as an initiator. The sensing membrane in addition to the solid-contact layer was applied to a glassy-carbon disc as an electronic conductor. All performance characteristics of the presented electrode in terms of linearity, detection limit, pH range, response time and selectivity were evaluated. The sensor revealed a wide linearity over the range 2.0 × 10(−7)–1.0 × 10(−2) M, with a detection limit of 0.02 µg/mL and a sensitivity slope of 59.2 ± 0.8 mV/hamine concentration decade. A 40 mM Britton–Robinson (BR) buffer solution at pH of 6 was used for all harmine measurements. The electrode showed good selectivity towards harmine over other common interfering ions, and maintained a stable electrochemical response over two weeks. After applying the validation requirements, the proposed method revealed good performance characteristics. Method precision, accuracy, bias, trueness, repeatability, reproducibility, and uncertainty were also evaluated. These analytical capabilities support the fast and direct assessment of harmine in different urine specimens. The analytical results were compared with the standard liquid chromatographic method. The results obtained demonstrated that PEDOT/PSS was a promising solid-contact ion-to-electron transducer material in the development of harmine-ISE. The electrodes manifested enhanced stability and low cost, which provides a wide number of potential applications for pharmaceutical and forensic analysis. |
format | Online Article Text |
id | pubmed-7826799 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78267992021-01-25 Solid-Contact Potentiometric Sensors Based on Main-Tailored Bio-Mimics for Trace Detection of Harmine Hallucinogen in Urine Specimens Amr, Abde El-Galil E. Kamel, Ayman H. Almehizia, Abdulrahman A. Sayed, Ahmed Y. A. Abd-Rabboh, Hisham S. M. Molecules Article All-solid-state potentiometric sensors have attracted great attention over other types of potentiometric sensors due to their outstanding properties such as enhanced portability, simplicity of handling, affordability and flexibility. Herein, a novel solid-contact ion-selective electrode (SC-ISE) based on poly(3,4-ethylenedioxythiophene) (PEDOT) as the ion-to-electron transducer was designed and characterized for rapid detection of harmine. The harmine-sensing membrane was based on the use of synthesized imprinted bio-mimics as a selective material for this recognition. The imprinted receptors were synthesized using acrylamide (AA) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. The polymerization process was carried out at 70 °C in the presence of dibenzoyl peroxide (DBO) as an initiator. The sensing membrane in addition to the solid-contact layer was applied to a glassy-carbon disc as an electronic conductor. All performance characteristics of the presented electrode in terms of linearity, detection limit, pH range, response time and selectivity were evaluated. The sensor revealed a wide linearity over the range 2.0 × 10(−7)–1.0 × 10(−2) M, with a detection limit of 0.02 µg/mL and a sensitivity slope of 59.2 ± 0.8 mV/hamine concentration decade. A 40 mM Britton–Robinson (BR) buffer solution at pH of 6 was used for all harmine measurements. The electrode showed good selectivity towards harmine over other common interfering ions, and maintained a stable electrochemical response over two weeks. After applying the validation requirements, the proposed method revealed good performance characteristics. Method precision, accuracy, bias, trueness, repeatability, reproducibility, and uncertainty were also evaluated. These analytical capabilities support the fast and direct assessment of harmine in different urine specimens. The analytical results were compared with the standard liquid chromatographic method. The results obtained demonstrated that PEDOT/PSS was a promising solid-contact ion-to-electron transducer material in the development of harmine-ISE. The electrodes manifested enhanced stability and low cost, which provides a wide number of potential applications for pharmaceutical and forensic analysis. MDPI 2021-01-10 /pmc/articles/PMC7826799/ /pubmed/33435196 http://dx.doi.org/10.3390/molecules26020324 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Amr, Abde El-Galil E. Kamel, Ayman H. Almehizia, Abdulrahman A. Sayed, Ahmed Y. A. Abd-Rabboh, Hisham S. M. Solid-Contact Potentiometric Sensors Based on Main-Tailored Bio-Mimics for Trace Detection of Harmine Hallucinogen in Urine Specimens |
title | Solid-Contact Potentiometric Sensors Based on Main-Tailored Bio-Mimics for Trace Detection of Harmine Hallucinogen in Urine Specimens |
title_full | Solid-Contact Potentiometric Sensors Based on Main-Tailored Bio-Mimics for Trace Detection of Harmine Hallucinogen in Urine Specimens |
title_fullStr | Solid-Contact Potentiometric Sensors Based on Main-Tailored Bio-Mimics for Trace Detection of Harmine Hallucinogen in Urine Specimens |
title_full_unstemmed | Solid-Contact Potentiometric Sensors Based on Main-Tailored Bio-Mimics for Trace Detection of Harmine Hallucinogen in Urine Specimens |
title_short | Solid-Contact Potentiometric Sensors Based on Main-Tailored Bio-Mimics for Trace Detection of Harmine Hallucinogen in Urine Specimens |
title_sort | solid-contact potentiometric sensors based on main-tailored bio-mimics for trace detection of harmine hallucinogen in urine specimens |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826799/ https://www.ncbi.nlm.nih.gov/pubmed/33435196 http://dx.doi.org/10.3390/molecules26020324 |
work_keys_str_mv | AT amrabdeelgalile solidcontactpotentiometricsensorsbasedonmaintailoredbiomimicsfortracedetectionofharminehallucinogeninurinespecimens AT kamelaymanh solidcontactpotentiometricsensorsbasedonmaintailoredbiomimicsfortracedetectionofharminehallucinogeninurinespecimens AT almehiziaabdulrahmana solidcontactpotentiometricsensorsbasedonmaintailoredbiomimicsfortracedetectionofharminehallucinogeninurinespecimens AT sayedahmedya solidcontactpotentiometricsensorsbasedonmaintailoredbiomimicsfortracedetectionofharminehallucinogeninurinespecimens AT abdrabbohhishamsm solidcontactpotentiometricsensorsbasedonmaintailoredbiomimicsfortracedetectionofharminehallucinogeninurinespecimens |