Cargando…
Connectivity Patterns of Deep Brain Stimulation Targets in Patients with Gilles de la Tourette Syndrome
Since 1999, several targets for deep brain stimulation (DBS) in Gilles de la Tourette syndrome (GTS) have emerged showing similar success rates. Studies using different tractography techniques have identified connectivity profiles associated with a better outcome for individual targets. However, GTS...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826809/ https://www.ncbi.nlm.nih.gov/pubmed/33440771 http://dx.doi.org/10.3390/brainsci11010087 |
Sumario: | Since 1999, several targets for deep brain stimulation (DBS) in Gilles de la Tourette syndrome (GTS) have emerged showing similar success rates. Studies using different tractography techniques have identified connectivity profiles associated with a better outcome for individual targets. However, GTS patients might need individualized therapy. The objective of this study is to analyze the connectivity profile of different DBS targets for GTS. We identified standard target coordinates for the centromedian nucleus/nucleus ventro-oralis internus (CM/Voi), the CM/parafascicular (CM-Pf) complex, the anteromedial globus pallidus internus (amGPi), the posteroventral GPi (pvGPi), the ventral anterior/ventrolateral thalamus (VA/VL), and the nucleus accumbens/anterior limb of the internal capsule (Nacc/ALIC). Probabilistic tractography was performed from the targets to different limbic and motor areas based on patient-specific imaging and a normative connectome (HCP). Our analysis showed significant differences between the connectivity profiles of standard DBS targets (p < 0.05). Among all targets, the pvGPi showed the strongest connection to the sensorimotor cortex, while the amGPi showed the strongest connection to the prefrontal cortex in patient-specific imaging. Differences were observed between the connectivity profiles when using probabilistic tractography based on patient data and HCP. Our findings showed that the connectivity profiles of different DBS targets to major motor and limbic areas differ significantly. In the future, these differences may be considered when planning DBS for GTS patients employing an individualized approach. There were compelling differences in connectivity profiles when using different tractography techniques. |
---|