Cargando…
Deep Reinforcement Learning-Empowered Resource Allocation for Mobile Edge Computing in Cellular V2X Networks
With the rapid development of vehicular networks, vehicle-to-everything (V2X) communications have huge number of tasks to be calculated, which brings challenges to the scarce network resources. Cloud servers can alleviate the terrible situation regarding the lack of computing abilities of vehicular...
Autores principales: | Li, Dongji, Xu, Shaoyi, Li, Pengyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826838/ https://www.ncbi.nlm.nih.gov/pubmed/33430386 http://dx.doi.org/10.3390/s21020372 |
Ejemplares similares
-
Deep Reinforcement Learning for Computation Offloading and Resource Allocation in Unmanned-Aerial-Vehicle Assisted Edge Computing
por: Li, Shuyang, et al.
Publicado: (2021) -
Deep Reinforcement Learning Based Resource Allocation Strategy in Cloud-Edge Computing System
por: Xu, Jianqiao, et al.
Publicado: (2022) -
Task Offloading and Resource Allocation Strategy Based on Deep Learning for Mobile Edge Computing
por: Yu, Zijia, et al.
Publicado: (2022) -
Federated Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Smart Cities in a Mobile Edge Network
por: Chen, Xing, et al.
Publicado: (2022) -
Resource Allocation and Computation Offloading for Wireless Powered Mobile Edge Computing
por: Chen, Jun, et al.
Publicado: (2022)