Cargando…
Chlorovirus PBCV-1 Multidomain Protein A111/114R Has Three Glycosyltransferase Functions Involved in the Synthesis of Atypical N-Glycans
The structures of the four N-linked glycans from the prototype chlorovirus PBCV-1 major capsid protein do not resemble any other glycans in the three domains of life. All known chloroviruses and antigenic variants (or mutants) share a unique conserved central glycan core consisting of five sugars, e...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826918/ https://www.ncbi.nlm.nih.gov/pubmed/33435207 http://dx.doi.org/10.3390/v13010087 |
_version_ | 1783640635303002112 |
---|---|
author | Noel, Eric Notaro, Anna Speciale, Immacolata Duncan, Garry A. De Castro, Cristina Van Etten, James L. |
author_facet | Noel, Eric Notaro, Anna Speciale, Immacolata Duncan, Garry A. De Castro, Cristina Van Etten, James L. |
author_sort | Noel, Eric |
collection | PubMed |
description | The structures of the four N-linked glycans from the prototype chlorovirus PBCV-1 major capsid protein do not resemble any other glycans in the three domains of life. All known chloroviruses and antigenic variants (or mutants) share a unique conserved central glycan core consisting of five sugars, except for antigenic mutant virus P1L6, which has four of the five sugars. A combination of genetic and structural analyses indicates that the protein coded by PBCV-1 gene a111/114r, conserved in all chloroviruses, is a glycosyltransferase with three putative domains of approximately 300 amino acids each. Here, in addition to in silico sequence analysis and protein modeling, we measured the hydrolytic activity of protein A111/114R. The results suggest that domain 1 is a galactosyltransferase, domain 2 is a xylosyltransferase and domain 3 is a fucosyltransferase. Thus, A111/114R is the protein likely responsible for the attachment of three of the five conserved residues of the core region of this complex glycan, and, if biochemically corroborated, it would be the second three-domain protein coded by PBCV-1 that is involved in glycan synthesis. Importantly, these findings provide additional support that the chloroviruses do not use the canonical host endoplasmic reticulum–Golgi glycosylation pathway to glycosylate their glycoproteins; instead, they perform glycosylation independent of cellular organelles using virus-encoded enzymes. |
format | Online Article Text |
id | pubmed-7826918 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78269182021-01-25 Chlorovirus PBCV-1 Multidomain Protein A111/114R Has Three Glycosyltransferase Functions Involved in the Synthesis of Atypical N-Glycans Noel, Eric Notaro, Anna Speciale, Immacolata Duncan, Garry A. De Castro, Cristina Van Etten, James L. Viruses Article The structures of the four N-linked glycans from the prototype chlorovirus PBCV-1 major capsid protein do not resemble any other glycans in the three domains of life. All known chloroviruses and antigenic variants (or mutants) share a unique conserved central glycan core consisting of five sugars, except for antigenic mutant virus P1L6, which has four of the five sugars. A combination of genetic and structural analyses indicates that the protein coded by PBCV-1 gene a111/114r, conserved in all chloroviruses, is a glycosyltransferase with three putative domains of approximately 300 amino acids each. Here, in addition to in silico sequence analysis and protein modeling, we measured the hydrolytic activity of protein A111/114R. The results suggest that domain 1 is a galactosyltransferase, domain 2 is a xylosyltransferase and domain 3 is a fucosyltransferase. Thus, A111/114R is the protein likely responsible for the attachment of three of the five conserved residues of the core region of this complex glycan, and, if biochemically corroborated, it would be the second three-domain protein coded by PBCV-1 that is involved in glycan synthesis. Importantly, these findings provide additional support that the chloroviruses do not use the canonical host endoplasmic reticulum–Golgi glycosylation pathway to glycosylate their glycoproteins; instead, they perform glycosylation independent of cellular organelles using virus-encoded enzymes. MDPI 2021-01-10 /pmc/articles/PMC7826918/ /pubmed/33435207 http://dx.doi.org/10.3390/v13010087 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Noel, Eric Notaro, Anna Speciale, Immacolata Duncan, Garry A. De Castro, Cristina Van Etten, James L. Chlorovirus PBCV-1 Multidomain Protein A111/114R Has Three Glycosyltransferase Functions Involved in the Synthesis of Atypical N-Glycans |
title | Chlorovirus PBCV-1 Multidomain Protein A111/114R Has Three Glycosyltransferase Functions Involved in the Synthesis of Atypical N-Glycans |
title_full | Chlorovirus PBCV-1 Multidomain Protein A111/114R Has Three Glycosyltransferase Functions Involved in the Synthesis of Atypical N-Glycans |
title_fullStr | Chlorovirus PBCV-1 Multidomain Protein A111/114R Has Three Glycosyltransferase Functions Involved in the Synthesis of Atypical N-Glycans |
title_full_unstemmed | Chlorovirus PBCV-1 Multidomain Protein A111/114R Has Three Glycosyltransferase Functions Involved in the Synthesis of Atypical N-Glycans |
title_short | Chlorovirus PBCV-1 Multidomain Protein A111/114R Has Three Glycosyltransferase Functions Involved in the Synthesis of Atypical N-Glycans |
title_sort | chlorovirus pbcv-1 multidomain protein a111/114r has three glycosyltransferase functions involved in the synthesis of atypical n-glycans |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826918/ https://www.ncbi.nlm.nih.gov/pubmed/33435207 http://dx.doi.org/10.3390/v13010087 |
work_keys_str_mv | AT noeleric chloroviruspbcv1multidomainproteina111114rhasthreeglycosyltransferasefunctionsinvolvedinthesynthesisofatypicalnglycans AT notaroanna chloroviruspbcv1multidomainproteina111114rhasthreeglycosyltransferasefunctionsinvolvedinthesynthesisofatypicalnglycans AT specialeimmacolata chloroviruspbcv1multidomainproteina111114rhasthreeglycosyltransferasefunctionsinvolvedinthesynthesisofatypicalnglycans AT duncangarrya chloroviruspbcv1multidomainproteina111114rhasthreeglycosyltransferasefunctionsinvolvedinthesynthesisofatypicalnglycans AT decastrocristina chloroviruspbcv1multidomainproteina111114rhasthreeglycosyltransferasefunctionsinvolvedinthesynthesisofatypicalnglycans AT vanettenjamesl chloroviruspbcv1multidomainproteina111114rhasthreeglycosyltransferasefunctionsinvolvedinthesynthesisofatypicalnglycans |