Cargando…
Experimental Investigation on Stability, Viscosity, and Electrical Conductivity of Water-Based Hybrid Nanofluid of MWCNT-Fe(2)O(3)
The superiority of nanofluid over conventional working fluid has been well researched and proven. Newest on the horizon is the hybrid nanofluid currently being examined due to its improved thermal properties. This paper examined the viscosity and electrical conductivity of deionized water (DIW)-base...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826994/ https://www.ncbi.nlm.nih.gov/pubmed/33429998 http://dx.doi.org/10.3390/nano11010136 |
_version_ | 1783640653804077056 |
---|---|
author | Giwa, Solomon O. Sharifpur, Mohsen Ahmadi, Mohammad H. Sohel Murshed, S. M. Meyer, Josua P. |
author_facet | Giwa, Solomon O. Sharifpur, Mohsen Ahmadi, Mohammad H. Sohel Murshed, S. M. Meyer, Josua P. |
author_sort | Giwa, Solomon O. |
collection | PubMed |
description | The superiority of nanofluid over conventional working fluid has been well researched and proven. Newest on the horizon is the hybrid nanofluid currently being examined due to its improved thermal properties. This paper examined the viscosity and electrical conductivity of deionized water (DIW)-based multiwalled carbon nanotube (MWCNT)-Fe(2)O(3) (20:80) nanofluids at temperatures and volume concentrations ranging from 15 °C to 55 °C and 0.1–1.5%, respectively. The morphology of the suspended hybrid nanofluids was characterized using a transmission electron microscope, and the stability was monitored using visual inspection, UV–visible, and viscosity-checking techniques. With the aid of a viscometer and electrical conductivity meter, the viscosity and electrical conductivity of the hybrid nanofluids were determined, respectively. The MWCNT-Fe(2)O(3)/DIW nanofluids were found to be stable and well suspended. Both the electrical conductivity and viscosity of the hybrid nanofluids were augmented with respect to increasing volume concentration. In contrast, the temperature rise was noticed to diminish the viscosity of the nanofluids, but it enhanced electrical conductivity. Maximum increments of 35.7% and 1676.4% were obtained for the viscosity and electrical conductivity of the hybrid nanofluids, respectively, when compared with the base fluid. The obtained results were observed to agree with previous studies in the literature. After fitting the obtained experimental data, high accuracy was achieved with the formulated correlations for estimating the electrical conductivity and viscosity. The examined hybrid nanofluid was noticed to possess a lesser viscosity in comparison with the mono-particle nanofluid of Fe(2)O(3)/water, which was good for engineering applications as the pumping power would be reduced. |
format | Online Article Text |
id | pubmed-7826994 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78269942021-01-25 Experimental Investigation on Stability, Viscosity, and Electrical Conductivity of Water-Based Hybrid Nanofluid of MWCNT-Fe(2)O(3) Giwa, Solomon O. Sharifpur, Mohsen Ahmadi, Mohammad H. Sohel Murshed, S. M. Meyer, Josua P. Nanomaterials (Basel) Article The superiority of nanofluid over conventional working fluid has been well researched and proven. Newest on the horizon is the hybrid nanofluid currently being examined due to its improved thermal properties. This paper examined the viscosity and electrical conductivity of deionized water (DIW)-based multiwalled carbon nanotube (MWCNT)-Fe(2)O(3) (20:80) nanofluids at temperatures and volume concentrations ranging from 15 °C to 55 °C and 0.1–1.5%, respectively. The morphology of the suspended hybrid nanofluids was characterized using a transmission electron microscope, and the stability was monitored using visual inspection, UV–visible, and viscosity-checking techniques. With the aid of a viscometer and electrical conductivity meter, the viscosity and electrical conductivity of the hybrid nanofluids were determined, respectively. The MWCNT-Fe(2)O(3)/DIW nanofluids were found to be stable and well suspended. Both the electrical conductivity and viscosity of the hybrid nanofluids were augmented with respect to increasing volume concentration. In contrast, the temperature rise was noticed to diminish the viscosity of the nanofluids, but it enhanced electrical conductivity. Maximum increments of 35.7% and 1676.4% were obtained for the viscosity and electrical conductivity of the hybrid nanofluids, respectively, when compared with the base fluid. The obtained results were observed to agree with previous studies in the literature. After fitting the obtained experimental data, high accuracy was achieved with the formulated correlations for estimating the electrical conductivity and viscosity. The examined hybrid nanofluid was noticed to possess a lesser viscosity in comparison with the mono-particle nanofluid of Fe(2)O(3)/water, which was good for engineering applications as the pumping power would be reduced. MDPI 2021-01-08 /pmc/articles/PMC7826994/ /pubmed/33429998 http://dx.doi.org/10.3390/nano11010136 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Giwa, Solomon O. Sharifpur, Mohsen Ahmadi, Mohammad H. Sohel Murshed, S. M. Meyer, Josua P. Experimental Investigation on Stability, Viscosity, and Electrical Conductivity of Water-Based Hybrid Nanofluid of MWCNT-Fe(2)O(3) |
title | Experimental Investigation on Stability, Viscosity, and Electrical Conductivity of Water-Based Hybrid Nanofluid of MWCNT-Fe(2)O(3) |
title_full | Experimental Investigation on Stability, Viscosity, and Electrical Conductivity of Water-Based Hybrid Nanofluid of MWCNT-Fe(2)O(3) |
title_fullStr | Experimental Investigation on Stability, Viscosity, and Electrical Conductivity of Water-Based Hybrid Nanofluid of MWCNT-Fe(2)O(3) |
title_full_unstemmed | Experimental Investigation on Stability, Viscosity, and Electrical Conductivity of Water-Based Hybrid Nanofluid of MWCNT-Fe(2)O(3) |
title_short | Experimental Investigation on Stability, Viscosity, and Electrical Conductivity of Water-Based Hybrid Nanofluid of MWCNT-Fe(2)O(3) |
title_sort | experimental investigation on stability, viscosity, and electrical conductivity of water-based hybrid nanofluid of mwcnt-fe(2)o(3) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826994/ https://www.ncbi.nlm.nih.gov/pubmed/33429998 http://dx.doi.org/10.3390/nano11010136 |
work_keys_str_mv | AT giwasolomono experimentalinvestigationonstabilityviscosityandelectricalconductivityofwaterbasedhybridnanofluidofmwcntfe2o3 AT sharifpurmohsen experimentalinvestigationonstabilityviscosityandelectricalconductivityofwaterbasedhybridnanofluidofmwcntfe2o3 AT ahmadimohammadh experimentalinvestigationonstabilityviscosityandelectricalconductivityofwaterbasedhybridnanofluidofmwcntfe2o3 AT sohelmurshedsm experimentalinvestigationonstabilityviscosityandelectricalconductivityofwaterbasedhybridnanofluidofmwcntfe2o3 AT meyerjosuap experimentalinvestigationonstabilityviscosityandelectricalconductivityofwaterbasedhybridnanofluidofmwcntfe2o3 |