Cargando…
An In Vitro Evaluation of Primary Stability Values for Two Differently Designed Implants to Suit Immediate Loading in Very Soft Bone
The achievement of sufficient implant stability in poor quality bone seems to be a challenge. Most manufacturers develop special dental implants, which are claimed to show higher stability even in very soft bone. The aim of this experimental study was to compare two recently introduced dental implan...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827002/ https://www.ncbi.nlm.nih.gov/pubmed/33430004 http://dx.doi.org/10.3390/dj9010005 |
Sumario: | The achievement of sufficient implant stability in poor quality bone seems to be a challenge. Most manufacturers develop special dental implants, which are claimed to show higher stability even in very soft bone. The aim of this experimental study was to compare two recently introduced dental implants with differing thread designs. A total of 11 implants of each group were inserted in the part of the fresh bovine ribs, corresponding to very soft bone. The primary stability was measured with resonance frequency analysis (RFA) and Periotest; the average of two measurements for each method and for each implant was taken and statistical analysis was applied. The highest stability values were obtained with the ICX Active Master implants, followed by the Conelog(®) Progressive-Line implants placed with the very soft bone protocol. The primary stability values of the Conelog(®) Progressive-Line implants inserted by the very soft bone protocol and the ICX Active Master implants placed with the standard protocol showed sufficient stability for immediate loading in low-density bone. Within the limitations of this study, the thread design of the implants and underdimensioned implant bed preparation seem to be effective for better primary stability in cancellous bone. |
---|