Cargando…
Iterative Min Cut Clustering Based on Graph Cuts
Clustering nonlinearly separable datasets is always an important problem in unsupervised machine learning. Graph cut models provide good clustering results for nonlinearly separable datasets, but solving graph cut models is an NP hard problem. A novel graph-based clustering algorithm is proposed for...
Autores principales: | Liu, Bowen, Liu, Zhaoying, Li, Yujian, Zhang, Ting, Zhang, Zhilin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827042/ https://www.ncbi.nlm.nih.gov/pubmed/33440849 http://dx.doi.org/10.3390/s21020474 |
Ejemplares similares
-
Kernel Probabilistic K-Means Clustering
por: Liu, Bowen, et al.
Publicado: (2021) -
Data on cut-edge for spatial clustering based on proximity graphs
por: Aksac, Alper, et al.
Publicado: (2019) -
Dynamic graph cut based segmentation of mammogram
por: Angayarkanni, S. Pitchumani, et al.
Publicado: (2015) -
Identification of spatially variable genes with graph cuts
por: Zhang, Ke, et al.
Publicado: (2022) -
On the nullity of a graph with cut-points()
por: Gong, Shi-Cai, et al.
Publicado: (2012)