Cargando…

Genome-Wide Analysis and the Expression Pattern of the ERF Gene Family in Hypericum perforatum

Hypericum perforatum is a well-known medicinal herb currently used as a remedy for depression as it contains many high levels of secondary metabolites. The ethylene response factor (ERF) family encodes transcriptional regulators with multiple functions that play a vital role in the diverse developme...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Qian, Zhou, Wen, Li, Bin, Li, Lin, Fu, Meng, Zhou, Li, Yu, Xiaoding, Wang, Donghao, Wang, Zhezhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827068/
https://www.ncbi.nlm.nih.gov/pubmed/33440756
http://dx.doi.org/10.3390/plants10010133
Descripción
Sumario:Hypericum perforatum is a well-known medicinal herb currently used as a remedy for depression as it contains many high levels of secondary metabolites. The ethylene response factor (ERF) family encodes transcriptional regulators with multiple functions that play a vital role in the diverse developmental and physiological processes of plants, which can protect plants from various stresses by regulating the expression of genes. Although the function of several ERF genes from other plants has been further confirmed, H. perforatum is the first sequenced species in Malpighiales, and no information regarding the ERFs has been reported thus far. In this study, a total of 101 ERF genes were identified from H. perforatum. A systematic and thorough bioinformatic analysis of the ERF family was performed using the genomic database of H. perforatum. According to the phylogenetic tree analysis, HpERFs were further classified into 11 subfamilies. Gene ontology (GO) analysis suggested that most of the HpERFs likely participate in the biological processes of plants. The cis-elements were mainly divided into five categories, associated with the regulation of gene transcription, response to various stresses, and plant development. Further analysis of the expression patterns showed that the stress-responsive HpERFs responded to different treatments. This work systematically analyzed HpERFs using the genome sequences of H. perforatum. Our results provide a theoretical basis for further investigation of the function of stress-related ERFs in H. perforatum.