Cargando…

High-Linearity High-Resolution Time-of-Flight Linear-Array Digital Image Sensor Using Time-Domain Feedback

This paper presents a high-linearity high-resolution time-of-flight (ToF) linear-array digital image sensor using a time-domain negative feedback technique. A coarse ToF measurement loop uses a 5-bit digital-to-time converter (DTC) and a delayed gating-pulse generator for time-domain feedback to fin...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Juyeong, Yasutomi, Keita, Kagawa, Keiichiro, Kawahito, Shoji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827079/
https://www.ncbi.nlm.nih.gov/pubmed/33440663
http://dx.doi.org/10.3390/s21020454
_version_ 1783640675807395840
author Kim, Juyeong
Yasutomi, Keita
Kagawa, Keiichiro
Kawahito, Shoji
author_facet Kim, Juyeong
Yasutomi, Keita
Kagawa, Keiichiro
Kawahito, Shoji
author_sort Kim, Juyeong
collection PubMed
description This paper presents a high-linearity high-resolution time-of-flight (ToF) linear-array digital image sensor using a time-domain negative feedback technique. A coarse ToF measurement loop uses a 5-bit digital-to-time converter (DTC) and a delayed gating-pulse generator for time-domain feedback to find the zero of the difference between ToF and the digital estimate of the gating-pulse delay while maintaining a constant operating point of the analog readout circuits. A fine ToF measurement uses a delta-sigma modulation (DSM) loop using the time-domain feedback with a bit-stream signal form. Because of the self-contained property of the DSM for low distortion and noise exploited by the oversampling signal processing, the proposed technique provides high-linearity and high-range resolution in the fine ToF measurement. A prototype ToF sensor of 16.8 × 16.8 μm(2) two-tap pixels and fabricated in a 0.11 μm (1P4M) CMOS image sensors (CIS) process achieves +0.9%/−0.47% maximum nonlinearity error and a resolution of 0.24 mm (median) for the measurement range of 0–1.05 m. The ToF sensor produces an 11-bit fully digital output with a ToF measurement time of 22.4 ms.
format Online
Article
Text
id pubmed-7827079
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-78270792021-01-25 High-Linearity High-Resolution Time-of-Flight Linear-Array Digital Image Sensor Using Time-Domain Feedback Kim, Juyeong Yasutomi, Keita Kagawa, Keiichiro Kawahito, Shoji Sensors (Basel) Article This paper presents a high-linearity high-resolution time-of-flight (ToF) linear-array digital image sensor using a time-domain negative feedback technique. A coarse ToF measurement loop uses a 5-bit digital-to-time converter (DTC) and a delayed gating-pulse generator for time-domain feedback to find the zero of the difference between ToF and the digital estimate of the gating-pulse delay while maintaining a constant operating point of the analog readout circuits. A fine ToF measurement uses a delta-sigma modulation (DSM) loop using the time-domain feedback with a bit-stream signal form. Because of the self-contained property of the DSM for low distortion and noise exploited by the oversampling signal processing, the proposed technique provides high-linearity and high-range resolution in the fine ToF measurement. A prototype ToF sensor of 16.8 × 16.8 μm(2) two-tap pixels and fabricated in a 0.11 μm (1P4M) CMOS image sensors (CIS) process achieves +0.9%/−0.47% maximum nonlinearity error and a resolution of 0.24 mm (median) for the measurement range of 0–1.05 m. The ToF sensor produces an 11-bit fully digital output with a ToF measurement time of 22.4 ms. MDPI 2021-01-11 /pmc/articles/PMC7827079/ /pubmed/33440663 http://dx.doi.org/10.3390/s21020454 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kim, Juyeong
Yasutomi, Keita
Kagawa, Keiichiro
Kawahito, Shoji
High-Linearity High-Resolution Time-of-Flight Linear-Array Digital Image Sensor Using Time-Domain Feedback
title High-Linearity High-Resolution Time-of-Flight Linear-Array Digital Image Sensor Using Time-Domain Feedback
title_full High-Linearity High-Resolution Time-of-Flight Linear-Array Digital Image Sensor Using Time-Domain Feedback
title_fullStr High-Linearity High-Resolution Time-of-Flight Linear-Array Digital Image Sensor Using Time-Domain Feedback
title_full_unstemmed High-Linearity High-Resolution Time-of-Flight Linear-Array Digital Image Sensor Using Time-Domain Feedback
title_short High-Linearity High-Resolution Time-of-Flight Linear-Array Digital Image Sensor Using Time-Domain Feedback
title_sort high-linearity high-resolution time-of-flight linear-array digital image sensor using time-domain feedback
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827079/
https://www.ncbi.nlm.nih.gov/pubmed/33440663
http://dx.doi.org/10.3390/s21020454
work_keys_str_mv AT kimjuyeong highlinearityhighresolutiontimeofflightlineararraydigitalimagesensorusingtimedomainfeedback
AT yasutomikeita highlinearityhighresolutiontimeofflightlineararraydigitalimagesensorusingtimedomainfeedback
AT kagawakeiichiro highlinearityhighresolutiontimeofflightlineararraydigitalimagesensorusingtimedomainfeedback
AT kawahitoshoji highlinearityhighresolutiontimeofflightlineararraydigitalimagesensorusingtimedomainfeedback