Cargando…

Highly Sensitive Textile-Based Capacitive Pressure Sensors Using PVDF-HFP/Ionic Liquid Composite Films

Textile-based pressure sensors have garnered considerable interest in electronic textiles due to their diverse applications, including human–machine interface and healthcare monitoring systems. We studied a textile-based capacitive pressure sensor array using a poly(vinylidene fluoride)-co-hexafluor...

Descripción completa

Detalles Bibliográficos
Autores principales: Keum, Kyobin, Heo, Jae Sang, Eom, Jimi, Lee, Keon Woo, Park, Sung Kyu, Kim, Yong-Hoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827140/
https://www.ncbi.nlm.nih.gov/pubmed/33435515
http://dx.doi.org/10.3390/s21020442
Descripción
Sumario:Textile-based pressure sensors have garnered considerable interest in electronic textiles due to their diverse applications, including human–machine interface and healthcare monitoring systems. We studied a textile-based capacitive pressure sensor array using a poly(vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP)/ionic liquid (IL) composite film. By constructing a capacitor structure with Ag-plated conductive fiber electrodes that are embedded in fabrics, a capacitive pressure sensor showing high sensitivity, good operation stability, and a wide sensing range could be created. By optimizing the PVDF-HFP:IL ratio (6.5:3.5), the fabricated textile pressure sensors showed sensitivity of 9.51 kPa(−1) and 0.69 kPa(−1) in the pressure ranges of 0–20 kPa and 20–100 kPa, respectively. The pressure-dependent capacitance variation in our device was explained based on the change in the contact-area formed between the multi-filament fiber electrodes and the PVDF-HFP/IL film. To demonstrate the applicability and scalability of the sensor device, a 3 × 3 pressure sensor array was fabricated. Due to its matrix-type array structure and capacitive sensing mechanism, multi-point detection was possible, and the different positions and the weights of the objects could be identified.