Cargando…
Shallow Graph Convolutional Network for Skeleton-Based Action Recognition
Graph convolutional networks (GCNs) have brought considerable improvement to the skeleton-based action recognition task. Existing GCN-based methods usually use the fixed spatial graph size among all the layers. It severely affects the model’s abilities to exploit the global and semantic discriminati...
Autores principales: | Yang, Wenjie, Zhang, Jianlin, Cai, Jingju, Xu, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827280/ https://www.ncbi.nlm.nih.gov/pubmed/33440785 http://dx.doi.org/10.3390/s21020452 |
Ejemplares similares
-
Adaptive Attention Memory Graph Convolutional Networks for Skeleton-Based Action Recognition
por: Liu, Di, et al.
Publicado: (2021) -
GAS-GCN: Gated Action-Specific Graph Convolutional Networks for Skeleton-Based Action Recognition
por: Chan, Wensong, et al.
Publicado: (2020) -
Enhanced Spatial and Extended Temporal Graph Convolutional Network for Skeleton-Based Action Recognition
por: Li, Fanjia, et al.
Publicado: (2020) -
Multi-scale and attention enhanced graph convolution network for skeleton-based violence action recognition
por: Yang, Huaigang, et al.
Publicado: (2022) -
Whole and Part Adaptive Fusion Graph Convolutional Networks for Skeleton-Based Action Recognition
por: Zuo, Qi, et al.
Publicado: (2020)