Cargando…

Advances in Osteoporotic Bone Tissue Engineering

The increase in osteoporotic fracture worldwide is urging bone tissue engineering research to find new, improved solutions both for the biomaterials used in designing bone scaffolds and the anti-osteoporotic agents capable of promoting bone regeneration. This review aims to report on the latest adva...

Descripción completa

Detalles Bibliográficos
Autores principales: Codrea, Cosmin Iulian, Croitoru, Alexa-Maria, Baciu, Cosmin Constantin, Melinescu, Alina, Ficai, Denisa, Fruth, Victor, Ficai, Anton
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827332/
https://www.ncbi.nlm.nih.gov/pubmed/33445513
http://dx.doi.org/10.3390/jcm10020253
Descripción
Sumario:The increase in osteoporotic fracture worldwide is urging bone tissue engineering research to find new, improved solutions both for the biomaterials used in designing bone scaffolds and the anti-osteoporotic agents capable of promoting bone regeneration. This review aims to report on the latest advances in biomaterials by discussing the types of biomaterials and their properties, with a special emphasis on polymer-ceramic composites. The use of hydroxyapatite in combination with natural/synthetic polymers can take advantage of each of their components properties and has a great potential in bone tissue engineering, in general. A comparison between the benefits and potential limitations of different scaffold fabrication methods lead to a raised awareness of the challenges research face in dealing with osteoporotic fracture. Advances in 3D printing techniques are providing the ways to manufacture improved, complex, and specialized 3D scaffolds, capable of delivering therapeutic factors directly at the osteoporotic skeletal defect site with predefined rate which is essential in order to optimize the osteointegration/healing rate. Among these factors, strontium has the potential to increase osseointegration, osteogenesis, and healing rate. Strontium ranelate as well as other biological active agents are known to be effective in treating osteoporosis due to both anti-resorptive and anabolic properties but has adverse effects that can be reduced/avoided by local release from biomaterials. In this manner, incorporation of these agents in polymer-ceramic composites bone scaffolds can have significant clinical applications for the recovery of fractured osteoporotic bones limiting or removing the risks associated with systemic administration.