Cargando…

Co-Benefits Analysis of Buildings Based on Different Renewal Strategies: The Emergy-Lca Approach

Many cities have encountered challenges associated with rapid urban development, population growth and aging, in which urban renewal has become a promising option. Different renewal strategies, such as redevelopment, refurbishment and conservation, not only contributes to quality improvement and ene...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Wenjing, Hong, Jingke, Liu, Guiwen, Li, Kaijian, Huang, Yuanyuan, Zhang, Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827707/
https://www.ncbi.nlm.nih.gov/pubmed/33445634
http://dx.doi.org/10.3390/ijerph18020592
Descripción
Sumario:Many cities have encountered challenges associated with rapid urban development, population growth and aging, in which urban renewal has become a promising option. Different renewal strategies, such as redevelopment, refurbishment and conservation, not only contributes to quality improvement and energy consumption reduction of dilapidated urban area, but also to greenhouse gas (GHG) emissions mitigation. Such integrated benefits are often termed as co-benefits. However, choosing the most co-benefits strategy to adopt requires a holistic understanding of social-economic and environmental aspects, which has been less reported in the existing literature. Under such circumstance, this article aims to shed light on the co-benefits of different renewal strategies by adopting the Emergy-Life cycle assessment method. Then, the method is applied to one case study of the refurbishment of an educational building located in Chongqing, China. Resource allocation, CO(2) emissions and emergy-based indicators are calculated to assess the co-benefits during a 60-year research period, to compare the impacts of the complete demolition followed by a new one (rebuilding strategy) and the refurbishing of the existing building (refurbishment strategy). The case study shows that the annual emergy in the O&M phase of rebuilding strategy and refurbishment strategy were lower than existing building. Rebuilding and refurbishment strategies released approximately 59.1% and 80.6%, respectively, of the total CO(2) emissions that would be produced by the existing building. The results reveal that substantial environmental benefits can be obtained in both the refurbishment and rebuilding strategies. On the other hand, it can be concluded that the emergy yield ratio (EYR) for the rebuilding strategy is higher than refurbishment strategy, which demonstrate the better performance of refurbishment considering that less resources are required to generate greater benefits. In addition, the value of environmental loading ratio (ELR) and emergy sustainability index (ESI) also suggests that the refurbishment strategy performs better from the perspective of the environment. Thereby, the refurbishment strategy is more suitable than the rebuilding strategy. Findings from this study can be useful to urban planners and decision-makers in choosing the most suitable strategy to improve the quality of existing buildings.