Cargando…
Discovering Higher-Order Interactions Through Neural Information Decomposition
If regularity in data takes the form of higher-order functions among groups of variables, models which are biased towards lower-order functions may easily mistake the data for noise. To distinguish whether this is the case, one must be able to quantify the contribution of different orders of depende...
Autores principales: | Reing, Kyle, Ver Steeg, Greg, Galstyan, Aram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827712/ https://www.ncbi.nlm.nih.gov/pubmed/33430463 http://dx.doi.org/10.3390/e23010079 |
Ejemplares similares
-
Understanding Confounding Effects in Linguistic Coordination: An Information-Theoretic Approach
por: Gao, Shuyang, et al.
Publicado: (2015) -
Multitask learning and benchmarking with clinical time series data
por: Harutyunyan, Hrayr, et al.
Publicado: (2019) -
Uncovering Biologically Coherent Peripheral Signatures of Health and Risk for Alzheimer’s Disease in the Aging Brain
por: Riedel, Brandalyn C., et al.
Publicado: (2018) -
Comprehensive discovery of subsample gene expression components by information explanation: therapeutic implications in cancer
por: Pepke, Shirley, et al.
Publicado: (2017) -
Partial entropy decomposition reveals higher-order information structures in human brain activity
por: Varley, Thomas F., et al.
Publicado: (2023)