Cargando…
Temporal Convolutional Neural Networks for Radar Micro-Doppler Based Gait Recognition †
The capability of sensors to identify individuals in a specific scenario is a topic of high relevance for sensitive sectors such as public security. A traditional approach involves cameras; however, camera-based surveillance systems lack discretion and have high computational and storing requirement...
Autores principales: | Addabbo, Pia, Bernardi, Mario Luca, Biondi, Filippo, Cimitile, Marta, Clemente, Carmine, Orlando, Danilo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827729/ https://www.ncbi.nlm.nih.gov/pubmed/33430474 http://dx.doi.org/10.3390/s21020381 |
Ejemplares similares
-
Millimeter-Wave Array Radar-Based Human Gait Recognition Using Multi-Channel Three-Dimensional Convolutional Neural Network
por: Jiang, Xinrui, et al.
Publicado: (2020) -
The micro-Doppler effect in radar
por: Chen, Victor C
Publicado: (2019) -
Activity recognition of FMCW radar human signatures using tower convolutional neural networks
por: Helen Victoria, A., et al.
Publicado: (2021) -
An Application of Analytic Wavelet Transform and Convolutional Neural Network for Radar Intrapulse Modulation Recognition
por: Walenczykowska, Marta, et al.
Publicado: (2023) -
Micro-Doppler radar and its applications
por: Fioranelli, Francesco, et al.
Publicado: (2020)