Cargando…
An Experimental Study on Condition Diagnosis for Thrust Bearings in Oscillating Water Column Type Wave Power Systems
In order to utilize wave energy, various wave power systems are being actively researched and developed and interest in them is increasing. To maximize the operational efficiency, it is very important to monitor and maintain the fault of components of the system. In recent years, interest in the man...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827786/ https://www.ncbi.nlm.nih.gov/pubmed/33440684 http://dx.doi.org/10.3390/s21020457 |
_version_ | 1783640852257570816 |
---|---|
author | Kim, Tae-Wook Oh, Jaewon Min, Cheonhong Hwang, Se-Yun Kim, Min-Seok Lee, Jang-Hyun |
author_facet | Kim, Tae-Wook Oh, Jaewon Min, Cheonhong Hwang, Se-Yun Kim, Min-Seok Lee, Jang-Hyun |
author_sort | Kim, Tae-Wook |
collection | PubMed |
description | In order to utilize wave energy, various wave power systems are being actively researched and developed and interest in them is increasing. To maximize the operational efficiency, it is very important to monitor and maintain the fault of components of the system. In recent years, interest in the management cost, high reliability and facility utilization of such systems has increased. In this regard, fault diagnosis technology including fault factor analysis and fault reproduction is drawing attention as an important main technology. Therefore, in this study, to reproduce and monitor the faults of a wave power system, firstly, the failure mode of the system was analyzed using FMEA analysis. Secondly, according to the derived failure mode and effect, the thrust bearing was selected as a target for fault reproduction and a test equipment bench was constructed. Finally, with the vibration data obtained by conducting the tests, the vibration spectrum was analyzed to extract the features of the data for each operating status; the data was classified by applying the three machine learning algorithms: naïve Bayes (NB), k-nearest neighbor (k-NN), and multi-layer perceptron (MLP). The criteria for determining the fault were derived. It is estimated that a more efficient fault diagnosis is possible by using the standard and fault monitoring method of this study. |
format | Online Article Text |
id | pubmed-7827786 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78277862021-01-25 An Experimental Study on Condition Diagnosis for Thrust Bearings in Oscillating Water Column Type Wave Power Systems Kim, Tae-Wook Oh, Jaewon Min, Cheonhong Hwang, Se-Yun Kim, Min-Seok Lee, Jang-Hyun Sensors (Basel) Article In order to utilize wave energy, various wave power systems are being actively researched and developed and interest in them is increasing. To maximize the operational efficiency, it is very important to monitor and maintain the fault of components of the system. In recent years, interest in the management cost, high reliability and facility utilization of such systems has increased. In this regard, fault diagnosis technology including fault factor analysis and fault reproduction is drawing attention as an important main technology. Therefore, in this study, to reproduce and monitor the faults of a wave power system, firstly, the failure mode of the system was analyzed using FMEA analysis. Secondly, according to the derived failure mode and effect, the thrust bearing was selected as a target for fault reproduction and a test equipment bench was constructed. Finally, with the vibration data obtained by conducting the tests, the vibration spectrum was analyzed to extract the features of the data for each operating status; the data was classified by applying the three machine learning algorithms: naïve Bayes (NB), k-nearest neighbor (k-NN), and multi-layer perceptron (MLP). The criteria for determining the fault were derived. It is estimated that a more efficient fault diagnosis is possible by using the standard and fault monitoring method of this study. MDPI 2021-01-11 /pmc/articles/PMC7827786/ /pubmed/33440684 http://dx.doi.org/10.3390/s21020457 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Tae-Wook Oh, Jaewon Min, Cheonhong Hwang, Se-Yun Kim, Min-Seok Lee, Jang-Hyun An Experimental Study on Condition Diagnosis for Thrust Bearings in Oscillating Water Column Type Wave Power Systems |
title | An Experimental Study on Condition Diagnosis for Thrust Bearings in Oscillating Water Column Type Wave Power Systems |
title_full | An Experimental Study on Condition Diagnosis for Thrust Bearings in Oscillating Water Column Type Wave Power Systems |
title_fullStr | An Experimental Study on Condition Diagnosis for Thrust Bearings in Oscillating Water Column Type Wave Power Systems |
title_full_unstemmed | An Experimental Study on Condition Diagnosis for Thrust Bearings in Oscillating Water Column Type Wave Power Systems |
title_short | An Experimental Study on Condition Diagnosis for Thrust Bearings in Oscillating Water Column Type Wave Power Systems |
title_sort | experimental study on condition diagnosis for thrust bearings in oscillating water column type wave power systems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827786/ https://www.ncbi.nlm.nih.gov/pubmed/33440684 http://dx.doi.org/10.3390/s21020457 |
work_keys_str_mv | AT kimtaewook anexperimentalstudyonconditiondiagnosisforthrustbearingsinoscillatingwatercolumntypewavepowersystems AT ohjaewon anexperimentalstudyonconditiondiagnosisforthrustbearingsinoscillatingwatercolumntypewavepowersystems AT mincheonhong anexperimentalstudyonconditiondiagnosisforthrustbearingsinoscillatingwatercolumntypewavepowersystems AT hwangseyun anexperimentalstudyonconditiondiagnosisforthrustbearingsinoscillatingwatercolumntypewavepowersystems AT kimminseok anexperimentalstudyonconditiondiagnosisforthrustbearingsinoscillatingwatercolumntypewavepowersystems AT leejanghyun anexperimentalstudyonconditiondiagnosisforthrustbearingsinoscillatingwatercolumntypewavepowersystems AT kimtaewook experimentalstudyonconditiondiagnosisforthrustbearingsinoscillatingwatercolumntypewavepowersystems AT ohjaewon experimentalstudyonconditiondiagnosisforthrustbearingsinoscillatingwatercolumntypewavepowersystems AT mincheonhong experimentalstudyonconditiondiagnosisforthrustbearingsinoscillatingwatercolumntypewavepowersystems AT hwangseyun experimentalstudyonconditiondiagnosisforthrustbearingsinoscillatingwatercolumntypewavepowersystems AT kimminseok experimentalstudyonconditiondiagnosisforthrustbearingsinoscillatingwatercolumntypewavepowersystems AT leejanghyun experimentalstudyonconditiondiagnosisforthrustbearingsinoscillatingwatercolumntypewavepowersystems |