Cargando…
A Parallel Computing Approach to Spatial Neighboring Analysis of Large Amounts of Terrain Data Using Spark
Spatial neighboring analysis is an indispensable part of geo-raster spatial analysis. In the big data era, high-resolution raster data offer us abundant and valuable information, and also bring enormous computational challenges to the existing focal statistics algorithms. Simply employing the in-mem...
Autores principales: | Zhang, Jianbo, Ye, Zhuangzhuang, Zheng, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827788/ https://www.ncbi.nlm.nih.gov/pubmed/33430375 http://dx.doi.org/10.3390/s21020365 |
Ejemplares similares
-
Hands-on big data analytics with PySpark: analyze large datasets and discover techniques for testing, immunizing, and parallelizing Spark jobs
por: Lai, Rudy, et al.
Publicado: (2019) -
Spark: big data cluster computing in production
por: Ganelin, Ilya, et al.
Publicado: (2016) -
Big data analysis with Python: combine Spark and Python to unlock the powers of parallel computing and machine learning
por: Marin, Ivan, et al.
Publicado: (2019) -
CellNeighborEX: deciphering neighbor‐dependent gene expression from spatial transcriptomics data
por: Kim, Hyobin, et al.
Publicado: (2023) -
Improvement of signal-to-noise ratio in parallel neuron arrays with spatially nearest neighbor correlated noise
por: Feng, Tianquan, et al.
Publicado: (2018)