Cargando…
Hybrid Deep Learning (hDL)-Based Brain-Computer Interface (BCI) Systems: A Systematic Review
Background: Brain-Computer Interface (BCI) is becoming more reliable, thanks to the advantages of Artificial Intelligence (AI). Recently, hybrid Deep Learning (hDL), which combines different DL algorithms, has gained momentum over the past five years. In this work, we proposed a review on hDL-based...
Autores principales: | Alzahab, Nibras Abo, Apollonio, Luca, Di Iorio, Angelo, Alshalak, Muaaz, Iarlori, Sabrina, Ferracuti, Francesco, Monteriù, Andrea, Porcaro, Camillo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827826/ https://www.ncbi.nlm.nih.gov/pubmed/33429938 http://dx.doi.org/10.3390/brainsci11010075 |
Ejemplares similares
-
Comparing between Different Sets of Preprocessing, Classifiers, and Channels Selection Techniques to Optimise Motor Imagery Pattern Classification System from EEG Pattern Recognition
por: Ferracuti, Francesco, et al.
Publicado: (2021) -
A human-in-the-loop approach for enhancing mobile robot navigation in presence of obstacles not detected by the sensory set
por: Ferracuti, Francesco, et al.
Publicado: (2022) -
Editorial: Robots in assisted living environments: Enhancements, challenges and future perspectives
por: Freddi, Alessandro, et al.
Publicado: (2023) -
The Hybrid BCI
por: Pfurtscheller, Gert, et al.
Publicado: (2010) -
OptEF-BCI: An Optimization-Based Hybrid EEG and fNIRS–Brain Computer Interface
por: Ali, Muhammad Umair, et al.
Publicado: (2023)