Cargando…
Sensor and Component Fault Detection and Diagnosis for Hydraulic Machinery Integrating LSTM Autoencoder Detector and Diagnostic Classifiers
Anomaly occurrences in hydraulic machinery might lead to massive system shut down, jeopardizing the safety of the machinery and its surrounding human operator(s) and environment, and the severe economic implications following the faults and their associated damage. Hydraulics are mostly placed in ru...
Autores principales: | Mallak, Ahlam, Fathi, Madjid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827908/ https://www.ncbi.nlm.nih.gov/pubmed/33435428 http://dx.doi.org/10.3390/s21020433 |
Ejemplares similares
-
A Convolutional Autoencoder Based Fault Diagnosis Method for a Hydraulic Solenoid Valve Considering Unknown Faults
por: Yoo, Seungjin, et al.
Publicado: (2023) -
Improved Fault Diagnosis in Hydraulic Systems with Gated Convolutional Autoencoder and Partially Simulated Data
por: Gareev, Albert, et al.
Publicado: (2021) -
Proactive Fault Diagnosis of a Radiator: A Combination of Gaussian Mixture Model and LSTM Autoencoder
por: Lee, Jeong-Geun, et al.
Publicado: (2023) -
Fault Classification for Cooling System of Hydraulic Machinery Using AI
por: Khan, Haseeb Ahmed, et al.
Publicado: (2023) -
Vibration of hydraulic machinery
por: Wu, Yulin, et al.
Publicado: (2013)