Cargando…
Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions
Structure of model bimetallic PdAu nanoparticles is analyzed aiming to find Pd:Au ratios optimal for existence of Pd1 single-atom surface sites inside outer Au atomic shell. The analysis is performed using density-functional theory (DFT) calculations and topological approach based on DFT-parameteriz...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828025/ https://www.ncbi.nlm.nih.gov/pubmed/33430403 http://dx.doi.org/10.3390/nano11010122 |
_version_ | 1783640909163790336 |
---|---|
author | Mamatkulov, Mikhail Yudanov, Ilya V. Bukhtiyarov, Andrey V. Neyman, Konstantin M. |
author_facet | Mamatkulov, Mikhail Yudanov, Ilya V. Bukhtiyarov, Andrey V. Neyman, Konstantin M. |
author_sort | Mamatkulov, Mikhail |
collection | PubMed |
description | Structure of model bimetallic PdAu nanoparticles is analyzed aiming to find Pd:Au ratios optimal for existence of Pd1 single-atom surface sites inside outer Au atomic shell. The analysis is performed using density-functional theory (DFT) calculations and topological approach based on DFT-parameterized topological energy expression. The number of the surface Pd1 sites in the absence of adsorbates is calculated as a function of Pd concentration inside the particles. At low Pd contents none of the Pd atoms emerge on the surface in the lowest-energy chemical orderings. However, surface Pd1 sites become stable, when Pd content inside a Pd-Au particle reaches ca. 60%. Further Pd content increase up to almost pure Pd core is accompanied by increased concentration of surface Pd atoms, mostly as Pd1 sites, although larger Pd ensembles as dimers and linear trimers are formed as well. Analysis of the chemical orderings inside PdAu nanoparticles at different Pd contents revealed that enrichment of the subsurface shell by Pd with predominant occupation of its edge positions precedes emergence of Pd surface species. |
format | Online Article Text |
id | pubmed-7828025 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78280252021-01-25 Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions Mamatkulov, Mikhail Yudanov, Ilya V. Bukhtiyarov, Andrey V. Neyman, Konstantin M. Nanomaterials (Basel) Article Structure of model bimetallic PdAu nanoparticles is analyzed aiming to find Pd:Au ratios optimal for existence of Pd1 single-atom surface sites inside outer Au atomic shell. The analysis is performed using density-functional theory (DFT) calculations and topological approach based on DFT-parameterized topological energy expression. The number of the surface Pd1 sites in the absence of adsorbates is calculated as a function of Pd concentration inside the particles. At low Pd contents none of the Pd atoms emerge on the surface in the lowest-energy chemical orderings. However, surface Pd1 sites become stable, when Pd content inside a Pd-Au particle reaches ca. 60%. Further Pd content increase up to almost pure Pd core is accompanied by increased concentration of surface Pd atoms, mostly as Pd1 sites, although larger Pd ensembles as dimers and linear trimers are formed as well. Analysis of the chemical orderings inside PdAu nanoparticles at different Pd contents revealed that enrichment of the subsurface shell by Pd with predominant occupation of its edge positions precedes emergence of Pd surface species. MDPI 2021-01-07 /pmc/articles/PMC7828025/ /pubmed/33430403 http://dx.doi.org/10.3390/nano11010122 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mamatkulov, Mikhail Yudanov, Ilya V. Bukhtiyarov, Andrey V. Neyman, Konstantin M. Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions |
title | Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions |
title_full | Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions |
title_fullStr | Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions |
title_full_unstemmed | Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions |
title_short | Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions |
title_sort | pd single-atom sites on the surface of pdau nanoparticles: a dft-based topological search for suitable compositions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828025/ https://www.ncbi.nlm.nih.gov/pubmed/33430403 http://dx.doi.org/10.3390/nano11010122 |
work_keys_str_mv | AT mamatkulovmikhail pdsingleatomsitesonthesurfaceofpdaunanoparticlesadftbasedtopologicalsearchforsuitablecompositions AT yudanovilyav pdsingleatomsitesonthesurfaceofpdaunanoparticlesadftbasedtopologicalsearchforsuitablecompositions AT bukhtiyarovandreyv pdsingleatomsitesonthesurfaceofpdaunanoparticlesadftbasedtopologicalsearchforsuitablecompositions AT neymankonstantinm pdsingleatomsitesonthesurfaceofpdaunanoparticlesadftbasedtopologicalsearchforsuitablecompositions |