Cargando…
K-Module Algorithm: An Additional Step to Improve the Clustering Results of WGCNA Co-Expression Networks
Among biological networks, co-expression networks have been widely studied. One of the most commonly used pipelines for the construction of co-expression networks is weighted gene co-expression network analysis (WGCNA), which can identify highly co-expressed clusters of genes (modules). WGCNA identi...
Autores principales: | Hou, Jie, Ye, Xiufen, Li, Chuanlong, Wang, Yixing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828115/ https://www.ncbi.nlm.nih.gov/pubmed/33445666 http://dx.doi.org/10.3390/genes12010087 |
Ejemplares similares
-
An additional k-means clustering step improves the biological features of WGCNA gene co-expression networks
por: Botía, Juan A., et al.
Publicado: (2017) -
Stratification of Estrogen Receptor-Negative Breast Cancer Patients by Integrating the Somatic Mutations and Transcriptomic Data
por: Hou, Jie, et al.
Publicado: (2021) -
Identification of Critical Modules and Biomarkers of Ulcerative Colitis by Using WGCNA
por: Yuan, Yifan, et al.
Publicado: (2023) -
TPSC: a module detection method based on topology potential and spectral clustering in weighted networks and its application in gene co-expression module discovery
por: Liu, Yusong, et al.
Publicado: (2021) -
Susceptibility Modules and Genes in Hypertrophic Cardiomyopathy by WGCNA and ceRNA Network Analysis
por: Sun, Yifan, et al.
Publicado: (2022)