Cargando…

Evaluation of Adaptive Loop-Bandwidth Tracking Techniques in GNSS Receivers †

Global navigation satellite system (GNSS) receivers use tracking loops to lock onto GNSS signals. Fixed loop settings limit the tracking performance against noise, receiver dynamics, and the current scenario. Adaptive tracking loops adjust these settings to achieve optimal performance for a given sc...

Descripción completa

Detalles Bibliográficos
Autores principales: Cortés, Iñigo, van der Merwe, Johannes Rossouw, Nurmi, Jari, Rügamer, Alexander, Felber, Wolfgang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828125/
https://www.ncbi.nlm.nih.gov/pubmed/33445648
http://dx.doi.org/10.3390/s21020502
_version_ 1783640933159403520
author Cortés, Iñigo
van der Merwe, Johannes Rossouw
Nurmi, Jari
Rügamer, Alexander
Felber, Wolfgang
author_facet Cortés, Iñigo
van der Merwe, Johannes Rossouw
Nurmi, Jari
Rügamer, Alexander
Felber, Wolfgang
author_sort Cortés, Iñigo
collection PubMed
description Global navigation satellite system (GNSS) receivers use tracking loops to lock onto GNSS signals. Fixed loop settings limit the tracking performance against noise, receiver dynamics, and the current scenario. Adaptive tracking loops adjust these settings to achieve optimal performance for a given scenario. This paper evaluates the performance and complexity of state-of-the-art adaptive scalar tracking techniques used in modern digital GNSS receivers. Ideally, a tracking channel should be adjusted to both noisy and dynamic environments for optimal performance, defined by tracking precision and loop robustness. The difference between the average tracking jitter of the discriminator’s output and the square-root Cramér-Rao bound (CRB) indicates the loops’ tracking capability. The ability to maintain lock characterizes the robustness in highly dynamic scenarios. From a system perspective, the average lock indicator is chosen as a metric to measure the performance in terms of precision, whereas the average number of visible satellites being tracked indicates the system’s robustness against dynamics. The average of these metrics’ product at different noise levels leads to a reliable system performance metric. Adaptive tracking techniques, such as the fast adaptive bandwidth (FAB), the fuzzy logic (FL), and the loop-bandwidth control algorithm (LBCA), facilitate a trade-off for optimal performance. These adaptive tracking techniques are implemented in an open software interface GNSS hardware receiver. All three methods steer a third-order adaptive phase locked loop (PLL) and are tested in simulated scenarios emulating static and high-dynamic vehicular conditions. The measured tracking performance, system performance, and time complexity of each algorithm present a detailed analysis of the adaptive techniques. The results show that the LBCA with a piece-wise linear approximation is above the other adaptive loop-bandwidth tracking techniques while preserving the best performance and lowest time complexity. This technique achieves superior static and dynamic system performance being 1.5 times more complex than the traditional tracking loop.
format Online
Article
Text
id pubmed-7828125
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-78281252021-01-25 Evaluation of Adaptive Loop-Bandwidth Tracking Techniques in GNSS Receivers † Cortés, Iñigo van der Merwe, Johannes Rossouw Nurmi, Jari Rügamer, Alexander Felber, Wolfgang Sensors (Basel) Article Global navigation satellite system (GNSS) receivers use tracking loops to lock onto GNSS signals. Fixed loop settings limit the tracking performance against noise, receiver dynamics, and the current scenario. Adaptive tracking loops adjust these settings to achieve optimal performance for a given scenario. This paper evaluates the performance and complexity of state-of-the-art adaptive scalar tracking techniques used in modern digital GNSS receivers. Ideally, a tracking channel should be adjusted to both noisy and dynamic environments for optimal performance, defined by tracking precision and loop robustness. The difference between the average tracking jitter of the discriminator’s output and the square-root Cramér-Rao bound (CRB) indicates the loops’ tracking capability. The ability to maintain lock characterizes the robustness in highly dynamic scenarios. From a system perspective, the average lock indicator is chosen as a metric to measure the performance in terms of precision, whereas the average number of visible satellites being tracked indicates the system’s robustness against dynamics. The average of these metrics’ product at different noise levels leads to a reliable system performance metric. Adaptive tracking techniques, such as the fast adaptive bandwidth (FAB), the fuzzy logic (FL), and the loop-bandwidth control algorithm (LBCA), facilitate a trade-off for optimal performance. These adaptive tracking techniques are implemented in an open software interface GNSS hardware receiver. All three methods steer a third-order adaptive phase locked loop (PLL) and are tested in simulated scenarios emulating static and high-dynamic vehicular conditions. The measured tracking performance, system performance, and time complexity of each algorithm present a detailed analysis of the adaptive techniques. The results show that the LBCA with a piece-wise linear approximation is above the other adaptive loop-bandwidth tracking techniques while preserving the best performance and lowest time complexity. This technique achieves superior static and dynamic system performance being 1.5 times more complex than the traditional tracking loop. MDPI 2021-01-12 /pmc/articles/PMC7828125/ /pubmed/33445648 http://dx.doi.org/10.3390/s21020502 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Cortés, Iñigo
van der Merwe, Johannes Rossouw
Nurmi, Jari
Rügamer, Alexander
Felber, Wolfgang
Evaluation of Adaptive Loop-Bandwidth Tracking Techniques in GNSS Receivers †
title Evaluation of Adaptive Loop-Bandwidth Tracking Techniques in GNSS Receivers †
title_full Evaluation of Adaptive Loop-Bandwidth Tracking Techniques in GNSS Receivers †
title_fullStr Evaluation of Adaptive Loop-Bandwidth Tracking Techniques in GNSS Receivers †
title_full_unstemmed Evaluation of Adaptive Loop-Bandwidth Tracking Techniques in GNSS Receivers †
title_short Evaluation of Adaptive Loop-Bandwidth Tracking Techniques in GNSS Receivers †
title_sort evaluation of adaptive loop-bandwidth tracking techniques in gnss receivers †
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828125/
https://www.ncbi.nlm.nih.gov/pubmed/33445648
http://dx.doi.org/10.3390/s21020502
work_keys_str_mv AT cortesinigo evaluationofadaptiveloopbandwidthtrackingtechniquesingnssreceivers
AT vandermerwejohannesrossouw evaluationofadaptiveloopbandwidthtrackingtechniquesingnssreceivers
AT nurmijari evaluationofadaptiveloopbandwidthtrackingtechniquesingnssreceivers
AT rugameralexander evaluationofadaptiveloopbandwidthtrackingtechniquesingnssreceivers
AT felberwolfgang evaluationofadaptiveloopbandwidthtrackingtechniquesingnssreceivers