Cargando…

Mycotoxin Alternariol (AOH) Affects Viability and Motility of Mammary Breast Epithelial Cells

Mycotoxins are present in everyday diet as common food and feed pollutants. A part of them is still concerned as so-called emerging mycotoxins. Due to the lack of toxicity data, the safety limits and detail molecular mechanism have been not established yet for all of them. Alternariol (AOH), as one...

Descripción completa

Detalles Bibliográficos
Autores principales: Kowalska, Karolina, Habrowska-Górczyńska, Dominika Ewa, Kozieł, Marta Justyna, Urbanek, Kinga Anna, Domińska, Kamila, Piastowska-Ciesielska, Agnieszka Wanda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828135/
https://www.ncbi.nlm.nih.gov/pubmed/33445675
http://dx.doi.org/10.3390/ijms22020696
Descripción
Sumario:Mycotoxins are present in everyday diet as common food and feed pollutants. A part of them is still concerned as so-called emerging mycotoxins. Due to the lack of toxicity data, the safety limits and detail molecular mechanism have been not established yet for all of them. Alternariol (AOH), as one of these mycotoxins, produced by Alternaria species, is so far reported as an estrogenic, genotoxic, and immunomodulatory agent; however, its direct effect on human health is not known. Especially, in the case of hormone-dependent tissues which are sensitive to both endogenic, as well as external estrogenic agents, it might be crucial to assess the effect of AOH. Thus, this study evaluated how exposure to AOH affects viability and motility of the human normal mammary gland epithelial in vitro model. We observed that AOH significantly affects viability of cells in a time- and dose-dependent manner. Moreover, the induction of oxidative stress, DNA damage, and cell cycle arrest in the G2/M cell cycle phase was observed. The motility of 184A1 cells was also significantly affected. On the molecular level, AOH induced antioxidative stress response via activation of Nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway agents, as well as decrease in the phosphorylation of protein kinase B (Akt) and p44/42 (ERK 1-2) molecules, indicating that AOH might affect crucial signaling pathways in both physiological and pathophysiological processes in breast tissue.