Cargando…

Effect of Strain Rate on the Deformation Characteristic of AlN Ceramics under Scratching

To clarify the influence mechanism of strain rate effect on deformation characteristics of aluminum nitride (AlN) ceramics, some varied-velocity nanoscratching tests were carried out using a Berkovich indenter in this paper. The deformation characteristics of the scratched grooves were observed usin...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Shang, Li, Honggang, Kang, Renke, Zhang, Yu, Dong, Zhigang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828136/
https://www.ncbi.nlm.nih.gov/pubmed/33445699
http://dx.doi.org/10.3390/mi12010077
_version_ 1783640936091222016
author Gao, Shang
Li, Honggang
Kang, Renke
Zhang, Yu
Dong, Zhigang
author_facet Gao, Shang
Li, Honggang
Kang, Renke
Zhang, Yu
Dong, Zhigang
author_sort Gao, Shang
collection PubMed
description To clarify the influence mechanism of strain rate effect on deformation characteristics of aluminum nitride (AlN) ceramics, some varied-velocity nanoscratching tests were carried out using a Berkovich indenter in this paper. The deformation characteristics of the scratched grooves were observed using the scanning electron microscope. The experimental results showed higher scratch speed would lead to shallower penetration depth, fewer cracks, and indenter fewer slipping, which was more conducive to the plastic deformation of AlN ceramics. Considering the strain rate effect and the elastic recovery of material, a model for predicting the Berkovich indenter penetration depth under edge-forward mode was established. The prediction results were consistent with the experimental data, and the error was less than 5%, indicating that the model is effective. Based on the Boussinesq field, the Cerruti field, and the Sliding bubble field, a strain rate dependent scratch stress field model was established. The stress field revealed higher scratch speed may significantly reduce the maximum principal stress in the stress field under the indenter, which is the fundamental reason for reducing the crack damage and promoting the plastic deformation. The above study can provide theoretical guidance for reducing the processing damage of AlN ceramics.
format Online
Article
Text
id pubmed-7828136
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-78281362021-01-25 Effect of Strain Rate on the Deformation Characteristic of AlN Ceramics under Scratching Gao, Shang Li, Honggang Kang, Renke Zhang, Yu Dong, Zhigang Micromachines (Basel) Article To clarify the influence mechanism of strain rate effect on deformation characteristics of aluminum nitride (AlN) ceramics, some varied-velocity nanoscratching tests were carried out using a Berkovich indenter in this paper. The deformation characteristics of the scratched grooves were observed using the scanning electron microscope. The experimental results showed higher scratch speed would lead to shallower penetration depth, fewer cracks, and indenter fewer slipping, which was more conducive to the plastic deformation of AlN ceramics. Considering the strain rate effect and the elastic recovery of material, a model for predicting the Berkovich indenter penetration depth under edge-forward mode was established. The prediction results were consistent with the experimental data, and the error was less than 5%, indicating that the model is effective. Based on the Boussinesq field, the Cerruti field, and the Sliding bubble field, a strain rate dependent scratch stress field model was established. The stress field revealed higher scratch speed may significantly reduce the maximum principal stress in the stress field under the indenter, which is the fundamental reason for reducing the crack damage and promoting the plastic deformation. The above study can provide theoretical guidance for reducing the processing damage of AlN ceramics. MDPI 2021-01-12 /pmc/articles/PMC7828136/ /pubmed/33445699 http://dx.doi.org/10.3390/mi12010077 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gao, Shang
Li, Honggang
Kang, Renke
Zhang, Yu
Dong, Zhigang
Effect of Strain Rate on the Deformation Characteristic of AlN Ceramics under Scratching
title Effect of Strain Rate on the Deformation Characteristic of AlN Ceramics under Scratching
title_full Effect of Strain Rate on the Deformation Characteristic of AlN Ceramics under Scratching
title_fullStr Effect of Strain Rate on the Deformation Characteristic of AlN Ceramics under Scratching
title_full_unstemmed Effect of Strain Rate on the Deformation Characteristic of AlN Ceramics under Scratching
title_short Effect of Strain Rate on the Deformation Characteristic of AlN Ceramics under Scratching
title_sort effect of strain rate on the deformation characteristic of aln ceramics under scratching
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828136/
https://www.ncbi.nlm.nih.gov/pubmed/33445699
http://dx.doi.org/10.3390/mi12010077
work_keys_str_mv AT gaoshang effectofstrainrateonthedeformationcharacteristicofalnceramicsunderscratching
AT lihonggang effectofstrainrateonthedeformationcharacteristicofalnceramicsunderscratching
AT kangrenke effectofstrainrateonthedeformationcharacteristicofalnceramicsunderscratching
AT zhangyu effectofstrainrateonthedeformationcharacteristicofalnceramicsunderscratching
AT dongzhigang effectofstrainrateonthedeformationcharacteristicofalnceramicsunderscratching