Cargando…
Automatic Cephalometric Landmark Identification System Based on the Multi-Stage Convolutional Neural Networks with CBCT Combination Images
This study was designed to develop and verify a fully automated cephalometry landmark identification system, based on multi-stage convolutional neural networks (CNNs) architecture, using a combination dataset. In this research, we trained and tested multi-stage CNNs with 430 lateral and 430 MIP late...
Autores principales: | Kim, Min-Jung, Liu, Yi, Oh, Song Hee, Ahn, Hyo-Won, Kim, Seong-Hun, Nelson, Gerald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828192/ https://www.ncbi.nlm.nih.gov/pubmed/33445758 http://dx.doi.org/10.3390/s21020505 |
Ejemplares similares
-
Evaluation of a multi-stage convolutional neural network-based fully automated landmark identification system using cone-beam computed tomography-synthesized posteroanterior cephalometric images
por: Kim, Min-Jung, et al.
Publicado: (2021) -
Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks
por: Lee, Jeong-Hoon, et al.
Publicado: (2020) -
An Evaluation of Cellular Neural Networks for the Automatic Identification of Cephalometric Landmarks on Digital Images
por: Leonardi, Rosalia, et al.
Publicado: (2009) -
Automatic recognition of cephalometric landmarks via multi-scale sampling strategy
por: Zhao, Congyi, et al.
Publicado: (2023) -
Comparison of cephalometric measurements between conventional and automatic cephalometric analysis using convolutional neural network
por: Jeon, Sangmin, et al.
Publicado: (2021)