Cargando…
Evaluation of Mode II Fracture Toughness of Hybrid Fibrous Geopolymer Composites
This research aims to examine the fracture toughness of hybrid fibrous geopolymer composites under mode II. For this purpose, eight geopolymer mixtures were cast and tested to evaluate the influence of steel and synthetic fiber hybridization on mode II fracture response. The first mixture was plain...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828241/ https://www.ncbi.nlm.nih.gov/pubmed/33445781 http://dx.doi.org/10.3390/ma14020349 |
Sumario: | This research aims to examine the fracture toughness of hybrid fibrous geopolymer composites under mode II. For this purpose, eight geopolymer mixtures were cast and tested to evaluate the influence of steel and synthetic fiber hybridization on mode II fracture response. The first mixture was plain and was kept as a reference, while steel, polypropylene and glass fibers were used in the rest seven mixtures. The first three of which were mono-reinforced with one of the three fibers, while the rest of the four were hybrids reinforced with combinations of steel and synthetic fibers. The Brazilian center notched disc and the double notched cube test configurations were used to evaluate the mode II fracture toughness of the eight mixtures. The results of the tests showed that steel fibers played the vital role in enhancing the fracture toughness, where the mixtures S1.6 and S1.3G0.3 showed the best performance. The results also showed that increasing the notch depth decreased the fracture toughness with an approximate linear decrement fashion. It was found that the use of double-notched cubes resulted in much higher fracture toughness than the Brazilian notched discs, where the ratio of normalized fracture toughness of the disc specimens to cube specimens was approximately 0.37 to 0.47. This is attributed to the concentration of stresses along one defined path in the disc specimens compared to the multi-path stresses in the cube specimens. In addition, the accompanied tensile stresses in the disc specimens may lead to a mode I fracture before the designed mode II fracture. |
---|