Cargando…
A Convolutional Neural Network-Based Method for Corn Stand Counting in the Field
Accurate corn stand count in the field at early season is of great interest to corn breeders and plant geneticists. However, the commonly used manual counting method is time consuming, laborious, and prone to error. Nowadays, unmanned aerial vehicles (UAV) tend to be a popular base for plant-image-c...
Autores principales: | Wang, Le, Xiang, Lirong, Tang, Lie, Jiang, Huanyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828297/ https://www.ncbi.nlm.nih.gov/pubmed/33450839 http://dx.doi.org/10.3390/s21020507 |
Ejemplares similares
-
Convolutional Neural Networks for Image-Based Corn Kernel Detection and Counting
por: Khaki, Saeed, et al.
Publicado: (2020) -
High-throughput image-based plant stand count estimation using convolutional neural networks
por: Khaki, Saeed, et al.
Publicado: (2022) -
Rapeseed Stand Count Estimation at Leaf Development Stages With UAV Imagery and Convolutional Neural Networks
por: Zhang, Jian, et al.
Publicado: (2020) -
Convolutional Neural Networks and Heuristic Methods for Crowd Counting: A Systematic Review
por: Hassen, Khouloud Ben Ali, et al.
Publicado: (2022) -
Corn Seed Defect Detection Based on Watershed Algorithm and Two-Pathway Convolutional Neural Networks
por: Wang, Linbai, et al.
Publicado: (2022)