Cargando…
Norepinephrine Regulation of Ventromedial Hypothalamic Nucleus Astrocyte Glycogen Metabolism
The catecholamine norepinephrine (NE) links hindbrain metabolic-sensory neurons with key glucostatic control structures in the brain, including the ventromedial hypothalamic nucleus (VMN). In the brain, the glycogen reserve is maintained within the astrocyte cell compartment as an alternative energy...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828624/ https://www.ncbi.nlm.nih.gov/pubmed/33451134 http://dx.doi.org/10.3390/ijms22020759 |
_version_ | 1783641051191312384 |
---|---|
author | Briski, Karen P. Ibrahim, Mostafa M. H. Mahmood, A. S. M. Hasan Alshamrani, Ayed A. |
author_facet | Briski, Karen P. Ibrahim, Mostafa M. H. Mahmood, A. S. M. Hasan Alshamrani, Ayed A. |
author_sort | Briski, Karen P. |
collection | PubMed |
description | The catecholamine norepinephrine (NE) links hindbrain metabolic-sensory neurons with key glucostatic control structures in the brain, including the ventromedial hypothalamic nucleus (VMN). In the brain, the glycogen reserve is maintained within the astrocyte cell compartment as an alternative energy source to blood-derived glucose. VMN astrocytes are direct targets for metabolic stimulus-driven noradrenergic signaling due to their adrenergic receptor expression (AR). The current review discusses recent affirmative evidence that neuro-metabolic stability in the VMN may be shaped by NE influence on astrocyte glycogen metabolism and glycogen-derived substrate fuel supply. Noradrenergic modulation of estrogen receptor (ER) control of VMN glycogen phosphorylase (GP) isoform expression supports the interaction of catecholamine and estradiol signals in shaping the physiological stimulus-specific control of astrocyte glycogen mobilization. Sex-dimorphic NE control of glycogen synthase and GP brain versus muscle type proteins may be due, in part, to the dissimilar noradrenergic governance of astrocyte AR and ER variant profiles in males versus females. Forthcoming advances in the understanding of the molecular mechanistic framework for catecholamine stimulus integration with other regulatory inputs to VMN astrocytes will undoubtedly reveal useful new molecular targets in each sex for glycogen mediated defense of neuronal metabolic equilibrium during neuro-glucopenia. |
format | Online Article Text |
id | pubmed-7828624 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78286242021-01-25 Norepinephrine Regulation of Ventromedial Hypothalamic Nucleus Astrocyte Glycogen Metabolism Briski, Karen P. Ibrahim, Mostafa M. H. Mahmood, A. S. M. Hasan Alshamrani, Ayed A. Int J Mol Sci Review The catecholamine norepinephrine (NE) links hindbrain metabolic-sensory neurons with key glucostatic control structures in the brain, including the ventromedial hypothalamic nucleus (VMN). In the brain, the glycogen reserve is maintained within the astrocyte cell compartment as an alternative energy source to blood-derived glucose. VMN astrocytes are direct targets for metabolic stimulus-driven noradrenergic signaling due to their adrenergic receptor expression (AR). The current review discusses recent affirmative evidence that neuro-metabolic stability in the VMN may be shaped by NE influence on astrocyte glycogen metabolism and glycogen-derived substrate fuel supply. Noradrenergic modulation of estrogen receptor (ER) control of VMN glycogen phosphorylase (GP) isoform expression supports the interaction of catecholamine and estradiol signals in shaping the physiological stimulus-specific control of astrocyte glycogen mobilization. Sex-dimorphic NE control of glycogen synthase and GP brain versus muscle type proteins may be due, in part, to the dissimilar noradrenergic governance of astrocyte AR and ER variant profiles in males versus females. Forthcoming advances in the understanding of the molecular mechanistic framework for catecholamine stimulus integration with other regulatory inputs to VMN astrocytes will undoubtedly reveal useful new molecular targets in each sex for glycogen mediated defense of neuronal metabolic equilibrium during neuro-glucopenia. MDPI 2021-01-13 /pmc/articles/PMC7828624/ /pubmed/33451134 http://dx.doi.org/10.3390/ijms22020759 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Briski, Karen P. Ibrahim, Mostafa M. H. Mahmood, A. S. M. Hasan Alshamrani, Ayed A. Norepinephrine Regulation of Ventromedial Hypothalamic Nucleus Astrocyte Glycogen Metabolism |
title | Norepinephrine Regulation of Ventromedial Hypothalamic Nucleus Astrocyte Glycogen Metabolism |
title_full | Norepinephrine Regulation of Ventromedial Hypothalamic Nucleus Astrocyte Glycogen Metabolism |
title_fullStr | Norepinephrine Regulation of Ventromedial Hypothalamic Nucleus Astrocyte Glycogen Metabolism |
title_full_unstemmed | Norepinephrine Regulation of Ventromedial Hypothalamic Nucleus Astrocyte Glycogen Metabolism |
title_short | Norepinephrine Regulation of Ventromedial Hypothalamic Nucleus Astrocyte Glycogen Metabolism |
title_sort | norepinephrine regulation of ventromedial hypothalamic nucleus astrocyte glycogen metabolism |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828624/ https://www.ncbi.nlm.nih.gov/pubmed/33451134 http://dx.doi.org/10.3390/ijms22020759 |
work_keys_str_mv | AT briskikarenp norepinephrineregulationofventromedialhypothalamicnucleusastrocyteglycogenmetabolism AT ibrahimmostafamh norepinephrineregulationofventromedialhypothalamicnucleusastrocyteglycogenmetabolism AT mahmoodasmhasan norepinephrineregulationofventromedialhypothalamicnucleusastrocyteglycogenmetabolism AT alshamraniayeda norepinephrineregulationofventromedialhypothalamicnucleusastrocyteglycogenmetabolism |