Cargando…
Clinical Implications of Uric Acid in Heart Failure: A Comprehensive Review
Affecting more than 26 million people worldwide and with rising prevalence, heart failure (HF) represents a major global health problem. Hence, further research is needed in order to abate poor HF outcomes and mitigate significant expenses that burden health care systems. Based on available data, ex...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828696/ https://www.ncbi.nlm.nih.gov/pubmed/33466609 http://dx.doi.org/10.3390/life11010053 |
Sumario: | Affecting more than 26 million people worldwide and with rising prevalence, heart failure (HF) represents a major global health problem. Hence, further research is needed in order to abate poor HF outcomes and mitigate significant expenses that burden health care systems. Based on available data, experts agree that there is an urgent need for a cost-effective prognostic biomarker in HF. Although a significant number of biomarkers have already been investigated in this setting, the clinical utility of adding biomarker evaluation to routine HF care still remains ambiguous. Specifically, in this review we focused on uric acid (UA), a purine metabolism detriment whose role as cardiovascular risk factor has been exhaustingly debated for decades. Multiple large population studies indicate that UA is an independent predictor of mortality in acute and chronic HF, making it a significant prognostic factor in both settings. High serum levels have been also associated with an increased incidence of HF, thus expanding the clinical utility of UA. Importantly, emerging data suggests that UA is also implicated in the pathogenesis of HF, which sheds light on UA as a feasible therapeutic target. Although to date clinical studies have not been able to prove the benefits of xanthine oxidase in HF patients, we discuss the putative role of UA and xanthine oxidase in the pathophysiology of HF as a therapeutic target. |
---|