Cargando…

Experimental Investigation of Integrated Circular Triple-Wire Pulse GMAW of Q960E High-Strength Steel for Construction Machinery

Multi-wire welding has received much attention in the machinery industry due to its high efficiency. The aim of this study was to investigate a novel pulse gas metal arc welding (GMAW) that has circular triple-wire electrodes. The effect of the pulse phage angle on arc stability was particularly stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Ke, Wang, Fei, Duan, Dingshan, Zhang, Tianli, Luo, Chuanguang, Cressault, Yann, Yu, Zhishui, Yang, Lijun, Li, Huan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828836/
https://www.ncbi.nlm.nih.gov/pubmed/33466720
http://dx.doi.org/10.3390/ma14020375
Descripción
Sumario:Multi-wire welding has received much attention in the machinery industry due to its high efficiency. The aim of this study was to investigate a novel pulse gas metal arc welding (GMAW) that has circular triple-wire electrodes. The effect of the pulse phage angle on arc stability was particularly studied. Research showed that for typical phase angles the arc stability from low to high is 180°, 0°, and 120°, and the arcs are very stable at 120°. The triple-wire welding was used to weld a 9 mm thick Q960E steel, which is typically used for the arm of construction machinery. When the welding heat input was controlled at 1.26–1.56 kJ/mm, the weld zone was dominated by acicular ferrite, and the coarse-grained zone of the heat-affected zone was a mixed structure of lath martensite and lath bainite. The tensile strength of the welded joint reached 85% of the base metal and the impact toughness was above 62 J, which can meet the requirements of construction machinery. This indicates that the triple-wire welding has great potential to achieve efficient and high-quality welding for the construction machinery.