Cargando…

Gold nanorods and nanohydroxyapatite hybrid hydrogel for preventing bone tumor recurrence via postoperative photothermal therapy and bone regeneration promotion

Osteosarcoma is a malignant bone tumor, which often occurs in adolescents. However, surgical resection usually fails to completely remove the tumor clinically, which has been the main cause of postoperative recurrence and metastasis, resulting in the high death rate of patients. At the same time, os...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Jinfeng, Shi, Kun, Jia, Yanpeng, Wu, Yanting, Qian, Zhiyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829101/
https://www.ncbi.nlm.nih.gov/pubmed/33553811
http://dx.doi.org/10.1016/j.bioactmat.2021.01.006
Descripción
Sumario:Osteosarcoma is a malignant bone tumor, which often occurs in adolescents. However, surgical resection usually fails to completely remove the tumor clinically, which has been the main cause of postoperative recurrence and metastasis, resulting in the high death rate of patients. At the same time, osteosarcoma invades a large area of the bone defect, which cannot be self-repaired and seriously affects the life quality of the patients. Herein, a bifunctional methacrylated gelatin/methacrylated chondroitin sulfate hydrogel hybrid gold nanorods (GNRs) and nanohydroxyapatite (nHA), which possessed excellent photothermal effect, was constructed to eradicate residual tumor after surgery and bone regeneration. In vitro, K7M2wt cells (a mouse bone tumor cell line) can be efficiently eradicated by photothermal therapy of the hybrid hydrogel. Meanwhile, the hydrogel mimics the extracellular matrix to promote proliferation and osteogenic differentiation of mesenchymal stem cells. The GNRs/nHA hybrid hydrogel was capable of photothermal treatment of postoperative tumors and bone defect repair in a mice model of tibia osteosarcoma. Therefore, the hybrid hydrogel possesses dual functions of tumor therapy and bone regeneration, which shows great potential in curing bone tumors and provides a new hope for tumor-related bone complex disease.